Основные параметры конденсатора. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные параметры конденсатора.



Основными параметрами являются емкость и рабочее напряжение. Кроме того, свойства конденсаторов характеризуются рядом паразитных параметров.
Номинальная емкость Сном и допустимое отклонение от номинала ±DС.Номинальные значения емкости Сном высокочастотных конденсаторов так же как и номинальные значения сопротивлений стандартизированы и определяются рядами Е6, Е12, Е24 и т.д.(см.табл.2.1). Номинальные значения емкости электролитических конденсаторов определяются рядом: 0,5; 1; 2; 5; 10; 20; 30;50; 100; 200; 300; 500; 1000; 2000:5000 мкф.
Номинальные значения емкости бумажных пленочных конденсаторов определяются рядом: 0,5; 0,25; 0,5; 1; 2; 4; 6; 8; 20; 20; 40; 60; 80; 100; 200;400; 600; 800; 1000 мкф
По отклонению от номинала конденсаторы разделяются на классы (табл.2.4).

Класс 0,01 0,02 0,05     I II III IV V VI
Допуск, % ±0,1 ±0,2 ±0,5 ±1 ±2 ±5 ±10 ±20 -10 +20 -20 +30 -20 +50

Конденсаторы I, II, и III классов точности являются конденсаторами широкого применения и соответствуют рядам Е24, Е12 и Е6.

В зависимости от назначения в РЭА применяют конденсаторы различных классов точности. Блокировочные и разделительные конденсаторы обычно выбирают по II и III классам точности, контурные конденсаторы обычно имеют 1,0 или 00 классы точности, а фильтровые - IV, V и VI классы точности.

Электрическая прочность конденсаторов характеризуется величиной напряжения пробоя и зависит в основном от изоляционных свойств диэлектрика. Все конденсаторы в процессе изготовления подвергаются воздействию испытательного напряжения в течении 2 - 5 с. В технической документации указывается номинальное напряжение, т.е. такое максимальное напряжение, при котором конденсатор может работать длительное время при соблюдении условий, указанных в технической документации. Для повышения надежности РЭА конденсаторы используют при напряжении, которое меньше номинального.

Стабильность емкости определяется ее изменением под воздействием внешних факторов. Наибольшее влияние на величину емкости оказывает температура. Ее влияние оценивается температурным коэффициентом емкости (ТКЕ):

Изменение емкости обусловлено изменением диэлектрической проницаемости диэлектрика, изменением линейных размеров обкладок конденсатора и диэлектрика.
В основном же изменение емкости вызывается изменением диэлектрической проницаемости.

У высокочастотных конденсаторов величина ТКЕ не зависит от температуры и указывается на корпусе конденсатора путем окраски корпуса в определенный цвет и нанесения цветной метки.

У низкочастотных конденсаторов температурная зависимость емкости носит нелинейный характер. Температурная стабильность этих конденсаторов оценивается величиной предельного отклонения емкости при крайних значениях температуры. Низкочастотные конденсаторы разделены на три группы по величине температурной нестабильности: Н20 - ±20%; НЗО - ±30%; Н90 - (+50 -90)%.

Стабильность конденсаторов во времени хар-ся коэффициентом старения

Потери энергии в конденсаторах обусловлены электропроводностью и поляризацией диэлектрика (см. 1.6.7) и характеризуются тангенсом угла диэлектрических потерь tg d. Конденсаторы с керамическим диэлектриком имеют tg d»10-4, конденсаторы со слюдяным диэлектриком - 10-4, с бумажным - 0,01-0,02, с оксидным-0,1-1,0.


Свойства конденсатора

Частотные свойства. Емкость конденсатора зависит от частоты приложенного переменного напряжения. При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров – собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур образуемый ёмкостью С, собственной индуктивностью Lc и сопротивлением потерь Rп. Резонанс этого контура наступает на частоте при конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит емкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2..3 раза ниже резонансной.
Характер частотной зависимости действующей ёмкости конденсатора (с учётом влияния параметров Lc и Rп ) в диапазоне частот от нуля до обуславливается соотношением параметров С, Lc и Rп. В большинстве случаев Сд уменьшается с ростом частоты во всём указанном диапазоне частот. Однако вблизи резонансной частоты она всегда уменьшается и стремится к нулю.
Допускаемая амплитуда переменного напряжения на конденсаторе. Uт доп – амплитуда переменного напряжения, при которой потери энергии в конденсаторе не превышают допустимых. Значения Uт доп определяются по формуле

Где Pр доп допустимая реактивная мощность, B*A;

U — переменное напряжение на конденсаторе; — круговая частота; С — емкость конденсатора, Ф; f — частота переменного напряжения на конденсаторе, Гц. На рис. представлена зависимость некоторых параметров конденсатора, в частности зависимость напряжения UTдоп от частоты, построенная при фиксированных значениях температуры и допустимой мощности потерь Ра доп. Граничная частота определяется допустимым снижением действующей емкости Сд. На рисунке обозначены области режимов работы конденсаторов: 1 — рабочих; 2 — теплового пробоя; 3 — повышенной вероятности электрического пробоя; 4 — электрического пробоя; 5 — пониженных значений Сд; 6 — индуктивного характера сопротивления конденсатора.
Превышение Uтдоп может вызвать тепловой пробой диэлектрика и другие нежелательные явления.


 



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 598; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.20.56 (0.004 с.)