Появление новых мутаций: раковые заболевания 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Появление новых мутаций: раковые заболевания



Рак груди представляет собой одно из самых часто встречающихся онкологических заболеваний среди женщин, совокупный риск которого, по современным оценкам, составит к возрасту 85 лет для девочек, родившихся в 1990 г., около 12,6% (иначе говоря, заболеть может 1 из 8 девочек). Предположение о существовании гена (генов), ответственного за наследственную предрасположенность к раку груди, впервые было высказано более 100 лет назад. Когда оно было подтверждено, то оказалось, что примерно 5-10% всех случаев рака груди контролируются мутациями определенных генов (к настоящему моменту были картированы два таких гена — по одному на хромосомах 17 и 13).

Мутации, т.е. изменения наследственного аппарата клетки, затрагивающие целые хромосомы или их части, — наиболее часто встречающиеся примеры механизмов неменделевской генетики. Рассмотрим кратко одну из классификаций мутаций, разделяющую два их типа: гаметные (генеративные) и соматические. Первые изменяют гены, находящиеся в половых клетках; вторые — в клетках тела.

Гаметные мутации не влияют на фенотип родителей, поскольку они происходят во время формирования гаметы, т.е. когда фенотип родителя уже сформировался. Но с момента возникновения новой мутации она передается из поколения в поколение по законам Менделя. В результате таких мутаций, возникающих в поколении F0 (поколение родителей), фенотипически не проявляющих признаков болезни, а затем передающихся из поколения Ft в последующие поколения (F2, F3,...Fn) по законам Менделя, развиваются многие наследственные заболевания. Если мутация не детальна и не ведет к серьезному повреждению репродуктивной способности, процесс передачи мутировавшего гена из поколения в поколение приводит к появлению родословных со многими носителями мутации, начавшейся только в одном аллеле (на одной из хромосом представителя поколения /0)-Так, одна из мутаций гена на хромосоме 17, приводящая к развитию раковых заболеваний, вызывает примерно 57% всех наследуемых случаев рака груди. Механизм возникновения вредоносных мутаций неизвестен. Предполагается, что в большинстве случаев это спонтанные мутации. Не установлено также, происходят они в одном аллеле (у одного индивидуума) и затем распространяются в популяции или одинаковые мутации происходят у нескольких индивидуумов. До сих пор мы говорили о гаметных мутациях. Однако примерно случаев заболевания рака груди развивается в результате возник-новения соматических мутаций.

Соматическими мутациями называются мутации в клетках, не связанных с формированием гамет. Они воздействуют только на самого носителя мутации (определяют его фенотип). Наиболее широко известные соматические мутации связаны с развитием рака. Соматические мутации приводят к исчезновению исходных аллелей и замене их аллелями-мутантами. Если клетка с таким аллелем-мутантом начинает делиться, то во всех ее дочерних клетках появляются аллели-мутанты. Вот почему у индивида-носителя соматических мутаций сосуществуют разные клеточные популяции — и та, которая развивается из «нормальных» клеток (неповрежденных влиянием мутагена), и та, которая развивается из клеток, содержащих аллели-мутанты и являющихся причиной заболевания. Таких индивидов-носителей смешанных клеточных популяций называют «мозаиками».

Индуцированные мутации. До сих пор речь шла о спонтанных мутациях, т.е. происходящих без какой-либо известной причины. Возникновение мутаций — процесс вероятностный, и, соответственно, существует набор факторов, которые на эти вероятности влияют и изменяют их. Факторы, вызывающие мутации, называются мутагенами, а процесс изменения вероятностей появления мутации — индуцированием. Мутации, возникающие под влиянием мутагенов, называют индуцированными мутациями.

В современном технологически сложном обществе люди подвергаются воздействию самых разных мутагенов, поэтому изучение индуцированных мутаций приобретает все большее значение.

К физическим мутагенам относятся все виды ионизирующих излучений (гаммаи рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетовое излучение, высокие и низкие температуры; к химическим — многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры (например, чужеродные ДНК и РНК), алкалоиды и многие другие химические аген-ТЫ- Некоторые мутагены увеличивают частоту мутаций в сотни раз.

К числу наиболее изученных мутагенов относятся радиация высоких энергий и некоторые химические вещества. Радиация вызывает такие изменения в геноме человека, как хромосомные аберрации и п°терю нуклеотидных оснований (гл. IV). Частота встречаемости мутаций половых клеток, индуцированных радиацией, зависит от пола и Стадии развития половых клеток. Незрелые половые клетки мутируют Чаще, чем зрелые; женские половые клетки — реже, чем мужские. Роме того, частота мутаций, индуцированных радиацией, зависит т Условий и дозы облучения.

Соматические мутации, возникающие в результате радиации, пред собой основную угрозу населению, поскольку часто появление таких мутаций служит первым шагом на пути образования раковых опухолей. Так, одно из наиболее драматических последствий Чернобыльской аварии связано с возрастанием частоты встречаемости разных типов онкологических заболеваний. Например, в Гомельской области было обнаружено резкое увеличение числа детей, больных раком щитовидной железы. По некоторым данным, частота этого заболевания сегодня по сравнению с доаварийной ситуацией увеличилась в 20 раз.

Вопрос: разновидности мутагенов и индуцированные мутации

Мутагены, физические факторы и химические вещества, способные вызывать наследуемые изменения генетического материала – мутации. К таким факторам относятся все типы ионизирующих излучений, ультрафиолетовое излучение, высокие и низкие температуры и др. Среди химических мутагенов – алкалоиды, производные мочевины, аналоги азотистых оснований, входящих в состав нуклеиновых кислот, чужеродные для данного организма нуклеиновые кислоты. Т. к. мутации могут возникать спонтанно, без воздействия извне, мутагенными считаются те факторы (или их дозы), влияние которых приводит к частоте мутаций, достоверно превышающей их естественный уровень.

Мутации, как правило, вредны для организма. Поэтому новые химические вещества, с которыми может соприкасаться человек (лекарства, пищевые консерванты, красители для волос и др. косметика, средства бытовой химии, пестициды и др.), проверяют (тестируют) на мутагенную активность. Для этого разработаны стандартные методы и тест-объекты (микроорганизмы, культуры клеток животных и человека, некоторые растения и животные), позволяющие быстро определять чувствительность генетиче-ского аппарата к тем или иным агентам. Установлено, что многие мутагены являются одновременно и канцерогенами, т. е. веществами, вызывающими развитие злокачественных опухолей.

В связи с этим одна из важнейших задач охраны природы и обеспечения генетической безопасности человека – мониторинг окружающей среды и выявление загрязнителей, обладающих мутагенной и канцерогенной активностью. Вредное действие мутагенов на организм в ряде случаев может быть предотвращено или уменьшено применением специальных физических или химических факторов – антимутагенов.

Мутагены используют при искусственном (индуцированном) получении мутаций – мутагенезе, широко применяемом в генетических исследованиях и для создания исходного материала (набора перспективных мутантов) в селекции микроорганизмов, растений и животных.

Химические мутагены

Предложено три классификации химических мутагенов:

Рехборна, Фриза, Раппопорта.

Фриз предложил разделить мутагены на две основные группы:

1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации;

2) мутагены, вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутащий последующих ее репликаций.

В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса: замена основания или вставка основания. Различают два типа замены оснований: простую (транзиция) – на место одного пуринового основания встает другое или одно пиримидиновое основание заменяется другим; сложную (трансверсия) – вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым. Вставка основания – ведет более к глубоким изменениям генетического кода, чем простая замена оснований. В то же время основой изменения генетического признака, имеющего одно и то же фенотипическое выражение, могут быть мутационные повреждения различных генов.

Кроме простых замен, алкилирующие агенты способны индуцировать сложные замены – пурин на пиримидин. Мутагенное действие этих соединений было показано с вирусами ньюкаслской болезни и клещевого энцефалита.

Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. С помощью гидроксиламина были индуцированы мутации у вирусов герпеса, ньюкаслской болезни, полиомиелита.

В последнее время был синтезированный и изучен один из аналогов гидроксиламина – оксиметилгидроксиламин (ОМГА), реагирующий только с цитозином, но не с урацилом РНК, а следовательно, обладающий более высокой специфичностью и одной направленностью мутагенного действия.

Для вирусов человека и животных мутагеном является и формальдегид, с помощью которого были индуцированы мутанты у вируса полиомиелита и вируса западного энцефаломиелиталошадей при воздействии на очищенную РНК и внутриклеточный вирус. Механизм мутагенного действия формальдегида недостаточно изучен.

Механизм действия азотистой кислоты (НNО2) как мутагена на нуклеиновые кислоты заключается в дезаминировании органических оснований, т. е. отщепление от их молекул аминогруппы (NH2).

Физические мутагены

Мутагенное действие ультрафиолетового излучения. Действие УФ лучей как мутагенов состоит в том, что они взаимодействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длинной волны 260 – 280 нм. Попадая в молекулу нуклеиновой кислоты, они поглощаются входящими в ее состав органическими основаниями. Оказалось, что тимин, урацил, цитозин более чувствительны к ультрафиолетовым лучам, чем аденин и гуанин. При облучении УФ-лучами две соседние молекулы тиминов соединяются друг с другом в пары, образуя так называемые тиминовые димеры.

Под влиянием УФ-облучения получен мелкобляшечный мутант вируса западного лошадиного энцефаломиелита, обладающий стабильным S-фенотипом в культуре клеток ФКЭ. Установлена принципиальная возможность получения мутаций при воздействии УФ-лучей на репродуцирующийся вирус и его нуклеиновую кислоту, в которой происходят структурные нарушения РНК: компонент ее – урацил – образует диаметр и гидраты.

Не все мутации, образующиеся под влиянием мутагенов, одинаково стабильны. Мутанты, полученные при действии повышенной температуры, кислой среды, ультрафиолетовых лучей и ультразвуковых волн, давали около 20% реверсий, при воздействии профлавина все мутанты оказались полностью стабильными. Эти различия в стабильности связаны с неодинаковым молекулярным механизмом действия использованных мутагенов. Повышенная температура, кислая среда, ультрафиолетовые лучи вызывают главным образом локальные изменения вирусной нуклеиновой кислоты, ведущие к замене отдельных оснований. При мутагенном действии профламина, а также частично азотистой кислоты причиной мутаций являются выпадения или вставки оснований. При получении вакцинных вирусных штаммов путем воздействия на вирус мутагенами целесообразно использовать мутагены, вызывающие более глубокие изменения генетического кода – типа выпадений или вставок, так как такие мутанты обладают стабильностью наследственных свойств.

Эволюция вирусов в природе идет в различных направлениях, т. е. изменение патогенности вируса, спектра патогенности, антигенные, иммуногенные свойства вирусов и т. д. Эволюция разных видов имеет свои особенности. Одно из важных изменений, это изменение круга хозяев, приспособление к бактериям, грибам, насекомым, растениям.

Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз – удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Экспансия (имсерция) повторяющихся нуклеотидных последовательностей: миотоническая дистрофия (МД)

Встречаемость миотонической дистрофии составляет 1 на 8000. Это заболевание наследуется как аутосомное доминантное заболевание и представляет собой наиболее часто встречающуюся форму мышечной дистрофии у взрослых. Клинически это заболевание крайне разнообразно; его симптомы включают: миотонию, прогрессирующую слабость, атрофию мышц, расстройства сердечно-дыхательной системы, катаракты, раннее облысение, умственную отсталость и атрофию половых органов. Обычно первые клинические проявления МД наблюдаются в 30-40 лет, однако в некоторых случаях она развивается с момента рождения, и тогда ее симптоматика намного тяжелее. Врожденная МД отличается высокой смертностью, у выживших же детей классическая симптоматика МД обнаруживается уже к 10-летнему возрасту.

Мутация, вызывающая развитие МД, была выявлена, описана и картирована. Биологический механизм этой мутации связан с нестабильной природой повторяющейся последовательности азотистых оснований (о структуре ДНК — гл. IV) на участке гена, расположенном на длинном плече хромосомы 19 (гл. I). Генетический механизм нестабильных повторяющихся последовательностей был открыт сравнительно недавно. По неизвестной до сих пор причине короткие сегменты ДНК, состоящие из 2, 3 и 4 нуклеотидов (гл. I), выстраивают повторяющиеся последовательности, которые включают от двух до нескольких сотен таких сегментов. Повторяющуюся последовательность можно представить следующим образом:

АСАСТ — сегмент повторяющейся последовательности;

АСАСТАСАСТАСАСТАСАСТ АСАСТ— повторяющаяся последовательность из 5 сегментов; (А) АСАСТ АСАСТ, (а) АСАСТ АСАСТ АСАСТ АСАСТ - 2 разных аллеля (А и а) локуса, содержащего повторяющуюся последовательность. На языке генетики это означает, аллель А содержит 2 повтора (2 сегмента нуклеотидов), а аллель а содержит 4 повтора (4 сегмента нуклеотидов).

Сегодня эти повторяющиеся последовательности найдены более чем в 50 000 локусов человеческого генома. Каждый локус содержит несколько (иногда до 20 и более) аллелей, включающих разное количество таких повторяющихся последовательностей. Эти аллели обычно наследуются по законам Менделя, однако были обнаружены и отклоняющиеся от них случаи, когда при переходе от одного поколения к другому количество повторяющихся сегментов меняется. Благодаря этому, а также высокой вариативности аллелей в каждом локусе повторяющиеся последовательности привлекают особое внимание генетиков, занимающихся картированием и локализацией генов в геноме человека.

Было замечено, что чем больше количество повторяющихся последовательностей (т.е. чем длиннее вся повторяющаяся последовательность) у больных с МД, тем тяжелее протекает заболевание.

Как правило, здоровые люди являются носителями повторяющихся последовательностей длиной в 5—35 сегментов. Аллели больных, страдающих легкой формой МД, содержат 50—150 повторов. Аллели больных с классическим МД фенотипом (обычно это больные, у которых клинические симптомы появляются в 30—40-летнем возрасте) содержат от 100 до 1000 повторов, а аллели больных МД, симптоматика которых проявляется при рождении, могут содержать более 2000 повторов. В целом, чем длиннее повторяющаяся последовательность (чем больше повторов она содержит), тем раньше обнаруживает себя заболевание и тем тяжелее оно протекает. Это явление известно под названием «генетическая антиципация». Генетическая антиципация характерна не только для МД, но и для ряда других заболеваний (например, хореи Гентингтона и синдрома «ломкой».У-хромосомы — второго, после синдрома Дауна, по частоте встречаемости среди умственно отсталых).

 

 

 

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 59; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.149.244 (0.024 с.)