Особенности физиологии простейших. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Особенности физиологии простейших.



Простейшие — эукариотические одноклеточные микро­организмы, составляющие подцарство Protozoa в царстве жи­вотных (Animalia); являются одноклеточными животными. Снаружи простейшие окружены мембраной (пелликулой) — аналогом цитоплазматической мембраны клеток животных. Они содержат: ядро с ядерной оболочкой и ядрышком; цито­плазму, состоящую из эндоплазматического ретикулума, ми­тохондрий, лизосом, многочисленных рибосом и др. Размеры простейших колеблются в среднем от 2 до 100 мкм. Снаружи они окружены мем­браной (пелликулой) — аналогом цитоплазматической мембраны клеток животных.

Простейшие представлены 7 типами, из которых четыре типа (Sarcomastigophora, Apicomplexa, Ciliopkora, Microspora) включают возбудителей заболеваний у человека. Простейшие имеют: органы движения (жгутики, реснички, псевдоподии), питания (пищеварительные вакуоли) и выде­ления (сократительные вакуоли); могут питаться в результате фагоцитоза или образования особых структур. Некоторые простейшие имеют опорные фибриллы. Размножаются бес­полым путем — двойным делением или множественным де­лением (шизогония), а некоторые и половым путем (спорого­ния). Многие из них при неблагоприятных условиях образуют цисты — покоящиеся стадии, устойчивые к изменению тем­пературы, влажности и др. При окраске по Романовскому— Гимзеядро простейших окрашивается в красный, а цитоплаз­ма—в голубой цвет. По типу питания они могут быть гетеротрофами или ауто-трофами. Многие простейшие (дизентерийная амеба, лямб­лии, трихомонады, лейшмании, балантидии) могут расти на питательных средах, содержащих нативные белки и амино­кислоты. Для их культивирования используются также куль­туры клеток, куриные эмбрионы и лабораторные животные.

 

Классы иммуноглобулинов, их характеристика.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день.IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности. Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития.Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно опосредованной цитотоксичности. Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых. Сывороточный IgA: На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней.IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA: В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты.

 

 

Билет №23

 

1. Типы взаимодействия вируса с клеткой. Стадии ре­продукции вирусов.

Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и ин-тегративный. Продуктивный тип — завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип — не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов. Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбирует­ся на определенных участках клеточной мембраны — так назы­ваемых рецепторах. Клеточные рецепторы могут иметь разную хи­мическую природу, представляя собой белки, углеводные ком­поненты белков и липидов, липиды. Число специфических ре­цепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.Проникновение в клетку. Существует два способа проникнове­ния вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорб­ции вирусов происходят инвагинация (впячивание) участка кле­точной мембраны и образование внутриклеточной вакуоли, ко­торая содержит вирусную частицу. Вакуоль с вирусом может транс­портироваться в любом направлении в разные участки цитоплаз­мы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего ком­понента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с кле­точной мембраной процесс проникновения вируса в клетку со­четается с первым этапом его «раздевания». Конечными продук­тами «раздевания» являются сердцевина, нуклеокапсид или нук­леиновая кислота вируса. Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирус­ные белки и нуклеиновые кислоты, идущие на построение ви­русного потомства.Реализация генетической информации вируса осуществляет­ся в соответствии с процес­сами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфи­чески «узнавать» друг друга и при достаточной их концентра­ции самопроизвольно соединяются в результате гидрофобных, со­левых и водородных связей.Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;2. Сборка просто устроенных вирусов заключается во взаимодей­ствии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми­руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).Выход вирусов из клетки. Различают два основных типа выхо­да вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нук­леокапсиды сложно устроенных вирусов фиксируются на клеточ­ной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячива­ния образуется «почка», содержащая нуклеокапсид. Затем «поч­ка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При та­ком механизме клетка может продолжительное время продуци­ровать вирус, сохраняя в той или иной мере свои основные функции.Время, необходимое для осуществления полного цикла реп­родукции вирусов, варьирует от 5—6 ч (вирусы гриппа, нату­ральной оспы и др.) до нескольких суток (вирусы кори, адено­вирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репро­дукции.



Поделиться:


Последнее изменение этой страницы: 2016-06-29; просмотров: 392; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.211.66 (0.014 с.)