Хромосомная теория наследственности 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Хромосомная теория наследственности



Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. Гены расположены в хромосомах в определенной линейной последовательности;
  4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. Сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. На основании частот рекомбинации определяют расстояние между генами. Что позволяет строить генетические карты хромосом.

Задача

У кукурузы гладкая поверхность зёрен доминирует над морщинистой,неокрашенные зёрна рецессивный признак. Скрестили линию кукурузы с гладкими окрашенными зёрнами и с морщинистыми неокрашенными. В первом поколении все растения имели гладкие окрашенные зёрна. Гибридов первого поколения скрестили с родительским сортом с неокрашенными морщинистыми зёрнами. Получили 4152 растения с гладкими окрашенными зёрнами, 149 с морщинистыми окрашенными, 152 с гладкими неокрашенными и 4166 с морщинистыми неокрашенными. Как наследуются признаки.

  1. РЕШЕНИЕ.
    В первом поколении все растения с гладкими окрашенными зернами, след. эти признаки доминантны. Во втором поколении основными являются родительские фенотипы, значит гены сцеплены в транс-положении. Частота рекомбинантных фенотипов равна (149 + 152): (4152+149+152+4166) = 301: 8619=0,035. Таким образом, расстояние между генами составляет 3,5 морганид.

Подавляющее большинство видов животных представлено особями двух полов — мужского и женского. Расщепление по половой принадлежности происходит в соотношении 1:1. Иными словами, у всех видов численность самцов и самок приблизительно одинакова. Еще Г. Мендель обратил внимание на то, что такое расщепление в потомстве по какому-либо признаку наблюдается в тех случаях, когда одна из родительских особей была гетерозиготой (Аа) по этому признаку, а вторая — рецессивной гомозиготой (аа). Было сделано предположение, что один из полов (тогда было неясно, какой именно) гетерозиготен, а второй гомозиготен по гену, который определяет пол организма. Современная теория наследования пола была разработана Т. Морганом и его сотрудниками в начале XX в. Им удалось установить, что самцы и самки различаются по набору хромосом.

У мужских и женских организмов все пары хромосом, кроме одной, одинаковы и называются аутосомами, а одна пара хромосом, называемых половыми, — у самцов и самок различается. Например, и у самцов, и у самок дрозофил в каждой клетке по три пары аутосом, а вот половые хромосомы различаются: у самок — по две Х-хромосомы, а у самцов X и Y (рис 1). Пол будущей особи определяется во время оплодотворения. Если сперматозоид содержит Х-хромосому, то из оплодотворенной яйцеклетки разовьется самка (XX), а если в сперматозоиде содержалась половая Y-хромосома — то самец (ХY). Соотношение полов при таком скрещивании теоретически всегда будет 1:1.

Так как у самок дрозофил образуются только яйцеклетки, содержащие половые Х-хромосомы, то женский пол у дрозофил называют гомогаметным. У самцов дрозофил образуются в равном соотношении сперматозоиды либо с Х-, либо Y-половыми хромосомами. Поэтому мужской пол у дрозофил называется гетерогаметным.

У многих видов живых существ, например у ракообразных, земноводных, рыб, большинства млекопитающих (в том числе и человека), женский пол гомогаметный (XX), а мужской — гетерогаметный (ХY).

У людей Y-хромосома, определяющая мужской пол, передается от отца к сыну в момент оплодотворения. Таким образом, пол младенца зависит только от того, какая из половых хромосом попала в зиготу от отца. В У-хромосоме человека находятся гены белков, необходимых для нормального развития мужских половых желез. Эти железы очень быстро начинают выделять мужские половые гормоны, определяющие формирование всей половой системы мужчины. Если же в оплодотворении участвовал сперматозоид с Х-хромосомой, то в клетках развивающегося зародыша Y-хромосома отсутствует, значит, нет и кодируемых ей «мужских» белков. Поэтому в зародыше девочки развиваются яичники и женские половые пути.

Итак, у дрозофилы и человека женский пол является гомогаметным, и общая схема наследования пола у двух этих видов одинакова. У некоторых видов живых существ хромосомное определение пола совсем другое. Например, у птиц и рептилий — гомогаметны самцы (ZZ), а самки — гетерогаметны (ZW). У некоторых насекомых (например у сверчков) у самцов в хромосомном наборе лишь одна половая хромосома (ХО), а самки — гомогаметны (XX).

У пчел и муравьев половых хромосом нет, и самки имеют в клетках тела диплоидный набор хромосом, а самцы, развивающиеся партеногенетически (из неоплодотворенных яйцеклеток), — гаплоидный набор хромосом. Естественно, что в этом случае развитие сперматозоидов у самцов идет без мейоза, так как уменьшить число хромосом менее гаплоидного набора невозможно.

У крокодилов половые хромосомы не обнаружены. Пол зародыша, развивающегося в яйце, зависит от температуры окружающей среды: при высоких температурах развивается больше самок, а в том случае, если прохладно, — больше самцов.

Основные закономерности наследования признаков были впервые сформулированы в работах австрийского исследователя Грегора Менделя. Менделя считают отцом генетики — науки о закономерностях наследственности и изменчивости организмов. Он использовал в своей работе гибридологический метод генетики. Этот метод заключается в скрещивании организмов с определенными признаками и анализе проявления признаков у потомства. Предшественники Менделя уже пытались установить основные закономерности наследственности. Они занимались скрещиванием растений, реже животных и наблюдали такие явления, как доминирование и расщепление, однако не смогли сделать достаточно общих выводов из наблюдений.

Что же позволило работе Менделя стать революцией в биологии, и каковы ее основные принципы?

1. Одной из важнейших составляющих успеха Менделя было то, что он скрещивал сорта гороха, которые различались парами альтернативных признаков. Альтернативные признаки имеют четко различимые взаимоисключающие проявления без промежуточных форм по принципу «или — или». Например:

  • желтые или зеленые семена;
  • карликовые или нормальные растения;
  • пазушные или верхушечные цветки;
  • гладкие или морщинистые семядоли.

2. Второй составляющей работы Менделя является анализ генотипа и фенотипа организмов.

Определение

Генотип — это совокупность генов данного организма, а фенотип (от «фен» — признак) — это совокупность его признаков.

Поскольку гены не всегда проявляются как признаки, организмы могут иметь одинаковый фенотип, но разные генотипы. Фенотип также зависит от взаимодействия генотипа и окружающей среды, то есть организмы с одинаковым генотипом могут иметь разные признаки (например, близнецы или растения при вегетативном размножении).

3. Мендель проводил точный количественный учет проявления признаков у потомства, разбивая его на группы по признакам и подсчитывая число особей (или семян) в каждой. Он оперировал в своей работе не качественными понятиями («больше — меньше»), а точными цифрами. Он анализировал эти цифры и старался усмотреть в них определенные математические соотношения. Это без преувеличения можно назвать первым синтезом математики и биологии, а в целом - переворотом в биологическом мышлении.

4. При анализе наследования Мендель всегда обращал внимание на каждый признак отдельно. Этот принцип и сегодня лежит в основе генетического анализа. Ранее исследователи пытались описать фенотип как целое, по всем признакам сразу. Это был тупиковый путь, так как в таком случае закономерности наследования становятся слишком сложными для того, чтобы их легко вычленить. Для описания наследования необходимо выделять отдельный признак и «не обращать внимания» на остальные.

5. Мендель брал в исходные скрещивания не любые растения, а только чистые линии.

Определение

Чистая линия — это совокупность организмов, которые на протяжении многих поколений скрещиваний друг с другом проявляют одинаковые признаки (не дают расщепления).

Их получают путем близкородственных скрещиваний. Горох — самоопыляющееся растение, поэтому в данном случае чистые линии легко получаются путем самоопыления в течение нескольких поколений и отбора особей с постоянным проявлением признака в потомстве.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 97; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.37.45 (0.014 с.)