Глава 34. Вероятность и неоднозначность 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 34. Вероятность и неоднозначность



 

Чарлз Сандерс Пирс как-то сказал, что ни в одной другой области математики специалист не ошибается так легко, как в теории вероятностей. История подтверждает справедливость этого замечания.

Так, Лейбниц считал, что число 12 при бросании двух игральных костей выпадает также часто, как и число 11. Великий французский математик XVIII века Даламбер полагал, что результаты троекратного бросания одной монеты отличаются от результатов бросания трех монет одновременно, и был убежден, что после длинной серии «орлов» вероятность выпадения «решки» повышается (эту уверенность многие любители азартных игр разделяют и поныне).

В наше время теория вероятностей дает на столь простые вопросы ясные и четкие ответы, но при выполнении одного непременного требования: в условии задачи должно быть точно определено, каким именно способом следует производить соответствующие испытания. Всякого рода неточности и умолчания служат причиной недоразумений и парадоксов во многих занимательных задачах вероятностного характера.

Классическим примером может служить задача о сломанной палке: палку случайным образом ломают на три части; какова вероятность того, что из обломков можно составить треугольник? Для того чтобы решить эту задачу, мы должны непременно уточнить, как именно разрешается ломать палку.

Один из возможных вариантов заключается в следующем. Будем считать, что точки перелома равномерно распределены по длине палки. Выберем из них наугад две и переломим палку в выбранных точках. При таком понимании «случайного» переламывания палки на три части ответ задачи, как нетрудно показать, исходя из наглядных геометрических представлений, равен 1/4.

Действительно, нарисуем равносторонний треугольник и соединим середины его сторон отрезками прямых. У нас получится равносторонний треугольник меньших размеров, расположенный внутри первого (на рис. 176 меньший треугольник заштрихован).

 

Рис. 176 Если палку разломать на три части, то из ее обломков с вероятностью 1/4 можно составить треугольник.

 

Сумма длин перпендикуляров, опущенных из любой точки большого треугольника на его стороны, не зависит от выбора точки и равна высоте большого треугольника. Если эту точку выбрать внутри меньшего треугольника (на рис. 176 этому условию удовлетворяет точка А), то любой из трех перпендикуляров будет не больше суммы двух других перпендикуляров. Следовательно, из отрезков, равных по длине трем перпендикулярам, опущенным из любой точки малого треугольника на стороны большого, всегда можно построить треугольник. Если же точка лежит вне малого треугольника (на рис. 176 —точка В), то один перпендикуляр заведомо длиннее суммы двух других перпендикуляров, и построить из таких перпендикуляров треугольник невозможно.

Мы не случайно привели здесь эту простую геометрическую задачу. Ее решение тесно связано с решением вероятностной задачи о сломанной палке. В самом деле, сумма трех перпендикуляров соответствует длине палки, каждая точка большого треугольника отвечает одному и только одному способу разломать палку на три части, а три перпендикуляра — трем обломкам. Вероятность сломать палку с «благоприятным исходом» равна вероятности случайного выбора такой точки, что три опущенных из нее перпендикуляра могут служить сторонами некоторого треугольника. Как мы только что видели, такое событие возможно лишь тогда, когда случайно выбранная точка попадает внутрь заштрихованного треугольника.

Так как его площадь составляет 1/4 площади всего треугольника, то искомая вероятность равна 1/4.

Утверждению о том, что «палку случайным образом ломают на три части», можно придать иной смысл. Например, его можно толковать так: палку наугад переламывают на две части, затем также наугад выбирают один из обломков и переламывают его еще раз (снова в случайно выбранной точке). С какой вероятностью в этом случае из обломков можно составить треугольник?

Решение задачи дает тот же чертеж, что и в предыдущем случае. Если, переломив палку в первый раз, мы выберем более короткий обломок, то построить треугольник будет невозможно. Что же произойдет, если выбрать обломок подлиннее? Пусть вертикальный перпендикуляр на чертеже соответствует короткому обломку.

Для того чтобы вертикальный перпендикуляр был меньше суммы двух других перпендикуляров, точка, из которой они опущены, не должна лежать внутри самого верхнего из малых треугольников, на которые отрезками прямых, соединяющих середины его сторон, поделен большой треугольник. Точки, у которых вертикальный перпендикуляр меньше суммы двух других перпендикуляров, равномерно заполняют три малых треугольника в нижней части большого треугольника. Благоприятному исходу по-прежнему соответствуют лишь те точки, которые попадают внутрь заштрихованного треугольника, но на этот раз его площадь составляет лишь 1/3 площади, отвечающей всем возможным исходам. Следовательно, выбрав из двух обломков больший, мы сможем построить треугольник (разломав выбранный нами обломок еще раз на две части) лишь в 1/3 случаев. Так как вероятность выбрать больший обломок равна 1/2, ответ на вопрос задачи в этом случае равен произведению 1/2 на 1/3, то есть 1/6.

Геометрическими построениями в задачах такого рода следует пользоваться осторожно, потому что они также способны вводить в заблуждение своей неоднозначностью. В качестве примера приведем одну задачу, рассмотренную в курсе теории вероятностей знаменитого французского математика XIX века Бертрана: какова вероятность того, что проведенная наудачу хорда будет длиннее стороны равностороннего треугольника, вписанного в ту же окружность?

Ответить на этот вопрос можно, например, так. Хорда должна начинаться в некоторой точке окружности. Обозначим эту точку через А и проведем к окружности касательную в точке А (рис. 177,a).

 

Рис. 177 Вероятность того, что наудачу проведенная хорда длиннее стороны вписанного равностороннего треугольника, оказывается 1/3 (a), 1/2 (б) и 1/4 (в).

 

Другим концом хорды может быть любая точка окружности, поэтому мы получаем бесконечно много равновероятных хорд (некоторые из них на чертеже показаны пунктиром). Ясно, что длиннее стороны вписанного равностороннего треугольника могут быть лишь те хорды, которые попадают внутрь угла при вершине треугольника в точке А. Поскольку этот угол равен 60°, а хорды заполняют развернутый угол (180°), вероятность того, что случайно проведенная хорда будет длиннее стороны вписанного равностороннего треугольника, равна 60/180, или 1/3.

Возможен и несколько иной подход к решению задачи Бертрана.

Какую бы хорду мы ни провели, она всегда будет перпендикулярна одному из диаметров окружности. Будем считать, что проведенная нами хорда перпендикулярна вертикальному диаметру, и впишем в окружность равносторонний треугольник с вершиной, совпадающей с верхним концом вертикального диаметра (рис. 177, б). Точки пересечения хорд, перпендикулярных данному диаметру, с ним самим равномерно распределены по всему диаметру. Некоторые из этих хорд проведены на чертеже пунктирными линиями. Нетрудно показать, что расстояние от центра окружности до точки А равно половине радиуса. Обозначим через В точку того же диаметра, лежащую на расстоянии половины радиуса по другую сторону от центра. Легко видеть, что длиннее стороны вписанного равностороннего треугольника будут лишь те хорды, которые пересекают проведенный диаметр между точками А и В. Так как отрезок АВ составляет половину диаметра, ответ задачи 1/2.

Возможен и третий подход к ее решению. Любую точку круга можно рассматривать как середину некоторой хорды. Из рис. 177, в видно, что длиннее стороны вписанного равностороннего треугольника могут быть лишь те хорды, середины которых лежат внутри маленького заштрихованного круга. Площадь заштрихованного круга составляет ровно 1/4 площади всего круга. Отсюда следует, что и ответ задачи в данном случае оказывается равным 1/4.

Естественно возникает вопрос: какой же из трех ответов правилен? Каждый ответ верен по-своему, каждый отвечает определенному способу проведения «случайных» хорд. Экспериментально соответствующие построения можно осуществить, например, с помощью следующих трех «методов»:

1. Взять два веретена и, закрутив каждое из них в любую сторону независимо от другого, по очереди поставить их в центр круга.

Отметить конечные точки траекторий, описанных остриями веретен, и соединить отмеченные точки прямой. С вероятностью 1/3 отрезок этой прямой, заключенной внутри круга, будет больше стороны вписанного равностороннего треугольника.

2. Нарисовать мелом на асфальте большой круг и с расстояния около 5 метров вкатывать в него палку от метлы. Оставшись где-то внутри круга, палка наметит направление некоторой хорды. С вероятностью 1/2 эта хорда длиннее стороны вписанного равностороннего треугольника.

3. Намазать круг медом и подождать, пока на него не сядет муха. Провести хорду, середина которой совпадает с точкой, где сидит муха. С вероятностью 1/4 эта хорда будет длиннее стороны вписанного равностороннего треугольника.

Каждый из предложенных способов построения «случайных хорд» вполне законен, поэтому наша задача в ее первоначальной формулировке допускает различные толкования. Однозначное решение становится возможным лишь после того, как мы уточним, в каком именно смысле следует понимать выражение «провести случайным образом хорду», дав точное описание метода ее построения. Разумеется, большинство людей, если попросить их провести наугад хорду в окружности, изберут для этого способ, не имеющий ничего общего ни с одним из трех перечисленных выше способов.

С вероятностью, много большей чем 1/2, человек проводит хорду, превышающую по длине сторону вписанного равностороннего треугольника.

Другим примером неоднозначности, возникающей из-за того, что в условии задачи ничего не говорится о способе получения интересующих нас сведений, может служить задача 2 из главы 29.

Читателю сообщается, что у мистера Смита двое детей, из которых по крайней мере один мальчик. Требуется вычислить вероятность того, что у мистера Смита два сына. Многие читатели правильно заметили, что ответ зависит от того, каким образом мы узнаем, что «по крайней мере один из детей мальчик». Если из всех семей, имеющих по два ребенка, из которых по крайней мере один мальчик, выбирать случайным образом какую-нибудь одну семью, то ответ равен 1/3. Однако, оставаясь в рамках того же условия, можно действовать иначе. Из общего числа семей, имеющих по два ребенка, выберем наугад какую-нибудь одну семью. Если оба ребенка мальчики, то мы сообщим тому, кто решает задачу, что «по крайней мере один из детей мальчик». Если в выбранной нами семье две девочки, мы скажем, что «по крайней мере один ребенок девочка».

Если же в семье один мальчик и одна девочка, то, выбрав кого-нибудь из них наугад, мы с полным основанием сможем заявить, что «по крайней мере один ребенок в этой семье мальчик (или девочка)» в зависимости от того, кто из ребят был выбран. При таком способе получения необходимых для решения данных вероятность того, что в семье имеются два мальчика или две девочки, очевидно, равна 1/2. (Действительно, утверждения делаются в каждом из четырех случаев: ММ, МД, ДМ, ДД; М здесь означает мальчик, Д — девочка, а «однотипные» пары ММ и ДД составляют ровно половину общего числа случаев.) О том, что даже выдающиеся математики иногда упускают из виду возможность неоднозначного толкования условий этой задачи, свидетельствует хотя бы тот факт, что она (в формулировке, не достаточной для получения совершенно определенного ответа) включена в один из лучших учебников высшей математики, изданных для колледжей.

Еще труднее точно сформулировать задачу о трех заключенных и тюремном надзирателе, которая получила широкую известность.

Она также приводит к неожиданным парадоксам.

Три узника А, В и С, приговоренные к смертной казни, сидели в одиночных камерах. Губернатор решил помиловать одного из них. Записав имена заключенных на трех листочках бумаги, он бросил листочки в шляпу и тщательно перемешал. Затем он вытащил один листочек, прочитал значившееся там имя и сообщил по телефону свое решение тюремному надзирателю, потребовав от того, чтобы имя счастливчика в течение еще нескольких дней хранилось в тайне. Слух о помиловании дошел до заключенного А. Во время утреннего обхода А попытался выведать у надзирателя, кто же помилован, но тот отказался отвечать на подобные вопросы.

— Тогда назовите, — попросил А, — имя одного из заключенных, которые будут казнены. Если помилован В, назовите мне имя С.

Если помилован С, назовите мне имя В. Если помиловали меня, то бросьте монетку, чтобы решить, кого назвать — В или С.

— Но если вы увидите, что я бросаю монетку, — ответил осторожный надзиратель, — то сразу узнаете, что помиловали именно вас, а увидев, что я не бросаю монетку, вы догадаетесь, что помиловали либо вас, либо того, чье имя я не назову.

— Хорошо, — сказал А, — можете ничего не говорить мне сейчас, ответьте на мой вопрос завтра.

Надзиратель, ничего не знавший о теории вероятностей, провел в размышлениях всю ночь и решил, что даже если он и примет предложение А, то это ничем не поможет А оценить свои шансы остаться в живых. Поэтому на следующее утро надзиратель сообщил А, что казни подлежит заключенный В.

Когда надзиратель ушел, А про себя посмеялся над глупостью тюремщика: ведь теперь то, что у математиков принято называть «пространством элементарных событий», состояло лишь из двух равновероятных элементов: губернатор мог помиловать либо С, либо самого А. Следовательно, по всем правилам вычисления условной вероятности шансы А остаться в живых возросли с 1/3 до 1/2.

Надзиратель не знал, что А мог перестукиваться с находившимся в соседней камере заключенным С по водопроводной трубе. А не замедлил подробно передать своему соседу все, о чем он спросил надзирателя и что тот ему ответил. Заключенный С также обрадовался новости, потому что, рассуждая так же, как А, он подсчитал, что и его шансы остаться в живых возросли до 1/2.

Правильно ли рассуждали оба узника? Если же нет, то как должен был вычислять свои шансы на помилование каждый из них?

* * *

Вряд ли можно найти более красноречивый пример того, насколько легко может ошибиться при подсчете вероятности даже специалист и насколько рискованно полагаться на наглядные геометрические представления, чем второй вариант приведенной нами задачи о сломанной палке. Помещенное выше решение заимствовано из задачника по теории вероятностей, такой же ответ можно обнаружить и во многих других старых учебниках теории вероятностей. И все же это решение совершенно неправильно!

В первом варианте задачи, когда палку ломают в двух одновременно выбранных точках, каждый акт такого разделения палки на три части изображается на чертеже точкой, и они в совокупности равномерно заполняют три нижних (малых) треугольника.

Уитворт предполагает, что во втором варианте задачи, когда палку сначала случайным образом переламывают пополам, а затем, выбрав более длинный обломок, переламывают и его, точки, изображающие результаты двух последовательных переламываний палки, также будут заполнять три нижних треугольника. Но это предположение неверно: во втором случае в средний треугольник точки будут попадать чаще, чем в два других.

Примем длину палки за 1 и обозначим через х длину более короткого обломка, получившегося после первого переламывания палки. Чтобы построить треугольник, мы должны переломить в какой-то точке больший обломок, длина которого составляет (A-х) единиц. Следовательно, вероятность построить треугольник составляет 1/(1-x). Усреднив по х от 0 до 1/2, мы получаем — 1 + 2 In 2, или 0,386. Сломав палку в первый раз, мы еще должны после этого выбросить более длинный обломок. Так как этот выбор мы производим с вероятностью 1/2, число 0,386 для получения окончательного ответа нужно умножить на 1/2. В результате мы получаем ответ задачи: 0,193. Это чуть больше 1/6 — ответа, к которому приводят предыдущие рассуждения.

После опубликования мною статьи, составляющей содержание этой главы, я получил любопытное письмо от сотрудников Отдела учебных тестов из Принстона. Прислав правильное решение второго варианта задачи о сломанной палке, они предложили мне ответить, какая из следующих трех гипотез наиболее вероятна:

1) м-р Гарднер честно заблуждается;

2) м-р Гарднер умышленно совершает ошибки в рассуждениях, чтобы испытать своих читателей;

3) м-р Гарднер виновен в том, что в математическом мире принято называть заблуждениями Даламбера.

Сообщаю: наиболее вероятна третья гипотеза.

 

Ответы  

Ответ к задаче о трех смертниках: вероятность того, что помилован A, равна 1/3, вероятность того, что помилован С— 2/3.

Независимо от того, кто помилован в действительности, надзиратель сообщает А, что казнить собираются другого заключенного, поэтому, что бы ни сказал тюремщик заключенному А, вероятность остаться в живых для того по-прежнему остается равной 1/3.

Аналогичная ситуация возникает в следующей карточной игре.

Две черные карты (означающие смертный приговор) и одна красная карта (соответствующая помилованию) перетасовываются и сдаются трем игрокам А, В и С (заключенным). Если четвертый участник игры (надзиратель) заглянет во все карты, а затем откроет черную карту, принадлежащую либо В, либо С, то какова вероятность того, что у А красная карта? Трудно удержаться от искушения предположить, что искомая вероятность равна 1/2, так как нераскрытыми остались только две карты, лишь одна из которых черная. Но так как у одного из двух игроков, В или С, всегда должна быть черная карта, то показ ее не позволяет сделать никаких заключений о цвете карты, сданной игроку А.

Это нетрудно понять, если усугубить ситуацию — смертному приговору будет соответствовать туз пик в полной карточной колоде. Предположим, что карты сданы и А открывает одну из полученных им карт. Вероятность избежать смертного приговора для А равна 51/52. Если кто-нибудь заглянет в карты и откроет 50 карт, отличных от туза пик, то нераскрытыми останутся только две карты, одна из которых заведомо должна быть тузом пик, но это, очевидно, не понижает шансов А до 1/2. Не понижает потому, что, заглянув в 51 карту, мы всегда можем найти среди них 50 карт, значение которых отлично от туза пик. Поэтому, найдя и открыв их, мы не изменим вероятности того, что А не будет приговорен к смертной казни. Другое дело, если мы наугад раскрыли 50 карт и среди них не оказалось туза пик. В этом случае А с вероятностью 1/2 должен вытащить роковую карту.

А как обстоят дела у С? Либо А, либо С должен быть казнен.

Их вероятности выжить в сумме должны составлять 1. Шансы выжить у А равны 1/3; следовательно, С не будет казнен с вероятностью 2/3. Это подтверждается рассмотрением четырех возможных элементов в пространстве элементарных событий и их начальных вероятностей.

1. Помилован С, надзиратель назвал В (вероятность 1/3).

2. Помилован В, надзиратель назвал С (вероятность 1/3).

3. Помилован А, надзиратель назвал В (вероятность 1/6).

4. Помилован А, надзиратель назвал С (вероятность 1/6).

Узник А остается в живых в случаях 3 и 4; следовательно, вероятность счастливого исхода для А равна 1/3. Известие о том, что казни подлежит В, отвечает случаям 1 и 3. При этом случай 1 (вероятность 1/3) встречается вдвое чаще, чем случай 3 (вероятность 1/6). Следовательно, вероятность того, что помилован С, относится к вероятности помилования А как 2 к 1, то есть равна 2/3. В нашей карточной модели это означает, что с вероятностью 2/3 игрок С получает красную карту.

Задача о трех заключенных вызвала настоящий поток писем (мнения читателей разделились). К счастью, все возражения оказались безосновательными. Ниже приведен хорошо продуманный разбор этой задачи, принадлежащий ШеЙле Бишоп.

Сэр!

Прийти к заключению, что рассуждения А неверны, меня заставила следующая парадоксальная ситуация. Предположим, что первый разговор между А и его стражем был именно таким, как сказано в условии задачи, но когда тюремщик направлялся к камере А, чтобы сообщить тому о предстоящей казни В, то по дороге он провалился в люк или с ним приключилась какая-нибудь другая неприятность, помешавшая второму разговору с А.

В этом случае А мог бы рассуждать так: «Предположим, что надзиратель намеревался сообщить мне, что казнить собираются В. Тогда мой шанс остаться в живых был бы равен 1/2. С другой стороны, если бы надзиратель сообщил мне, что казнить должны С, то мои шансы не изменились бы и также составляли бы 1/2. Но мне достоверно известно, что он должен был сообщить мне либо одно, либо другое известие. Поэтому и в том и в другом случае с вероятностью 1/2 я должен остаться в живых». Итак, если рассуждать таким образом, то оказывается, что А мог бы подсчитать вероятность благоприятного для себя исхода (1/2), не спрашивая ни о чем своего тюремщика!

После нескольких часов размышления я наконец пришла к иному заключению. Рассмотрим большое число групп из трех узников, находящихся в той оке ситуации, что и А, В и С.

Пусть в каждой группе с тюремщиком беседует свой А. Если всего имеется 3n групп заключенных (по 3 человека в каждой группе), то в n из них будет помилован А, в n будет помилован В и в n будет помилован С. В 3n/2 случаях тюремщик скажет: «Будет казнен В». В n из этих случаев С будет выпущен на свободу, в n/2 случаях на свободу будет выпущен А. Шансы С вдвое больше шансов А. Следовательно, вероятности выжить для А и С равны соответственно 1/3 и 2/3…

Нашлись читатели, которые считают, что тюремного надзирателя незаслуженно оклеветали. Вот что написали двое из них:

Сэр!

Мы обращаемся к вам от имени надзирателя, который, являясь должностным лицом, не хотел бы быть замешанным в обсуждение спорных вопросов.

Вы порочите его репутацию, заявляя, будто надзиратель ничего не знал о теории вероятностей. Мы считаем, что подобное утверждение является величайшей несправедливостью. Вы заблуждаетесь, а быть может, и злостно клевещете. Со своей стороны мы хотим заверить вас, что математика вообще и теория вероятностей в частности в течение вот уже многих лет являются его излюбленнейшим занятием. То, что он, руководствуясь гуманным намерением облегчить последние часы осужденного человека (ибо, как известно теперь, помилован был С), ответил на вопрос А, ничуть не противоречит инструкциям, полученным им от губернатора.

Единственное, в чем его действительно можно упрекнуть (и за что он уже получил выговор от губернатора), так это то, что он не сумел воспрепятствовать установлению связи между А и С и тем самым не помешал С более точно оценить вероятность остаться в живых. Но и этот промах тюремщика не повлек за собой тяжких последствий, поскольку С не сумел должным образом воспользоваться полученной информацией.

Если вы публично не отречетесь от своих слов и не принесете извинений, мы будем вынуждены прекратить подписку на ваш журнал.

 

Глава 35. ДВОИЧНАЯ СИСТЕМА

 

В настоящее время во всем цивилизованном мире принята десятичная система записи чисел, основанная на использовании последовательных степеней числа 10. Самая правая цифра любого числа указывает, сколько в нем содержится единиц, то есть 100. Вторая от конца цифра указывает количество десятков, то есть 101; третья — число сотен, то есть 102, и т. д. Например, 777 в десятичной системе означает сумму (7 100) + (7 101) + (7 102). Столь широкое распространение числа 10 в качестве основания системы счисления объясняется тем, что у нас на руках десять пальцев. Не случайно английское слово «digit» имеет два значения: «палец» и «цифра». Если на Марсе обитают человекоподобные существа с двенадцатью пальцами, то можно с уверенностью сказать, что марсианская арифметика использует двенадцатеричную систему счисления с основанием 12.

Простейшей из всех числовых позиционных систем следует считать двоичную систему счисления с основанием 2. Двоичной системой пользовались при счете некоторые первобытные племена, она была известна еще древнекитайским математикам, но по-настоящему развил и построил двоичную систему великий немецкий математик Лейбниц, видевший в ней олицетворение глубокой метафизической истины. Нуль для Лейбница был символом небытия, пустоты, единица — символом бытия или материи. Он полагал, что и нуль и единица в равной степени необходимы Создателю, ибо вселенная, состоящая из одной лишь чистой материи, была бы неотличима от пустой, ничем не возмущаемой вселенной, которую символизирует 0. По Лейбницу, все в мире сотворено из двух противоположных начал — бытия и небытия, так же как любое число в двоичной системе представлено одними лишь нулями и единицами. Со времен Лейбница и вплоть до недавнего времени двоичную систему считали не более чем занятным курьезом, лишенным какой бы то ни было практической ценности. Но вот появились вычислительные машины. Многие их детали работают по принципу «да-нет»: ток либо течет по проводнику, либо не течет; переключатель находится либо в положении «включено», либо в положении «выключено»; полюс магнита может быть либо северным, либо южным, ячейка памяти находится только в одном из двух состояний. Это и позволяет конструировать компьютеры, способные с огромной быстротой и точностью перерабатывать входные данные, закодированные в двоичной системе. «Увы! — пишет известный голландский математик Т. Данциг в своей книге «Число — язык науки», то, что некогда возвышалось как монумент монотеизму, очутилось во чреве робота».

Во многих математических играх также используется двоичная система. Назовем хотя бы игру в ним (см. главу 14), такие механические головоломки, как Ханойская башня и кардановы кольца, а также бесчисленные фокусы с перфокартами. В этой главе мы расскажем лишь об известном наборе специальных карт, позволяющих «читать мысли», и тесно связанном с ним наборе перфокарт, пользуясь которыми вы сможете показать несколько замечательных «двоичных» фокусов.

 

Принцип карт, позволяющих «читать мысли», ясен из приведенной выше таблицы. В ее левой части выписаны двоичные числа от 0 до 31. Каждая цифра двоичного числа — это коэффициент при некоторой степени двойки. Самая правая цифра означает коэффициент при 20, или 1. Затем справа налево идут коэффициенты при 21 (или 2), 22, 23 и т. д. Степени двойки указаны над каждым столбцом. Чтобы перевести двоичное число в десятичное, нужно просто сложить те степени двойки, которые встречаются с единичным коэффициентом. Так, двоичное число 10101 означает 16+4+1, или 21.

Чтобы десятичное число 21 перевести в двоичную систему, нужно проделать обратную процедуру. Поделив 21 на 2, мы получим 10 и 1 в остатке. Этот остаток и будет самой правой цифрой двоичного числа. Поделив 10 на 2, мы не получим остатка, поэтому на втором месте справа следует написать 0. Затем нужно поделить 5 на 2 и продолжать в том же духе до тех пор, пока не получим двоичное число 10101. Самая левая («старшая») цифра числа получается так: 2 входит в 1 нуль раз, а остаток равен 1.

Таблицу двоичных чисел легко превратить в набор карт для угадывания мыслей: нужно заменить каждую единичку тем десятичным числом, в двоичной записи которого она встречается. Результат такой подстановки показан в правой части таблицы. Каждый столбец чисел выписывается на отдельной карточке.

 

Дайте кому-нибудь все пять карт, попросите задумать любое из чисел от 0 до 31 и вернуть вам те карточки, на которых встречается выбранное число. Получив карточки, вы сразу же можете назвать задуманное число: чтобы узнать его, нужно лишь сложить самые верхние числа на возвращенных вам карточках.

Как получается этот фокус? Каждое задуманное число задает особую, неповторяющуюся комбинацию карт. Эта комбинация эквивалентна двоичной записи чисел. Складывая верхние числа, стоящие на возвращенных карточках, вы просто находите сумму тех степеней двойки, которые входят в двоичное разложение задуманного числа с коэффициентом 1. Чтобы еще сильнее запутать зрителей, можно воспользоваться разноцветными карточками. Вы уходите в противоположный конец комнаты и просите зрителя положить карточки с задуманным им числом в один карман, а остальные карточки — в другой. Разумеется, вы должны видеть отобранные карточки и помнить, какая степень двойки соответствует каждому цвету. Тот же фокус можно показывать и по-другому. Разложите пять карточек (на этот раз их не нужно раскрашивать) в ряд на столе.

Встав в другом конце комнаты, попросите кого-нибудь перевернуть карточки с задуманным им числом. Так как карточки расположены в порядке возрастания верхних чисел, вам остается лишь сложить верхние числа на перевернутых карточках и получить ответ.

Не мене интересные фокусы можно показать с помощью набора перфокарт, изображенного на рис. 178.

 

Рис. 178 Набор перфокарт, позволяющий прочесть новогоднее поздравление, отгадать задуманное число и решить некоторые логические задачи.

 

Они также основаны на использовании двоичной системы. Перфокарты можно изготовить из обычных карточек, используемых в библиотечных каталогах, картотеках и т. п. Отверстия должны быть чуть больше диаметра карандаша. Удобно сначала прорезать пять отверстий в одной карточке, а затем использовать ее как шаблон для того, чтобы наметить отверстия на других карточках. Если у вас нет дырокола, прорезание отверстий ножницами можно ускорить, если брать по три карточки и прорезать в них отверстия одновременно. Срезанный угол позволяет следить за тем, чтобы перфокарты не переворачивались. Проделав в каждой карточке по пять отверстий, прорежьте промежуток, отделяющий некоторые отверстия от края, так, как показано на рисунке. Отверстия, доходящие до края перфокарт, соответствуют цифре 1, остальные отверстия соответствуют цифре 0.

Таким образом, каждой перфокарте можно сопоставить некоторое двоичное число от 0 до 31, но карточки нарисованы в беспорядке.

С помощью этих перфокарт можно показать три необычных фокуса. И хотя изготовить карты довольно хлопотно, все члены вашей семьи с удовольствием будут забавляться ими.

Первый фокус заключается в быстрой сортировке перфокарт: нужно расположить их так, чтобы соответствующие перфорации числа последовательно возрастали от 0 до 31.

Перетасуйте перфокарты, как игральные, и сложите их колодой.

Продев карандаш в отверстие Е, немного приподнимите его. Половина карт окажется надетой на карандаш, а половина останется в колоде. Встряхните карандаш, чтобы те карты, которые должны остаться в колоде, не оказались вынутыми, и, подняв карандаш, разделите колоду на две части. Снимите с карандаша надетые на него карты и положите их поверх остальной колоды. Затем по очереди проделайте ту же процедуру, продевая карандаш в каждое из отверстий по порядку справа налево. Дойдя до пятого отверстия, вы с удивлением обнаружите, что двоичные числа, соответствующие перфорации карт, расположились по порядку от 0 до 31, а перелистав карточки, прочтете новогоднее поздравление.

Во втором фокусе перфокарты играют роль вычислительного устройства, позволяющего отгадывать числа, выписанные на карточках для «чтения мыслей». Продев карандаш в отверстие Е, спросим, встречается ли задуманное число на карточке, самое верхнее число которой равно 1. При утвердительном ответе нужно поднять карандаш и отбросить все карты, оказавшиеся надетыми на него. При отрицательном — отбросить карты, оставшиеся в колоде.

И в том и в другом случае у вас останется 16 карт. Спросите у вашего зрителя, находится ли задуманное им число на карточке с верхним числом 2, и повторите только что проделанные операции, продев карандаш в отверстие D. После того как ваш карандаш побывает во всех отверстиях (а вы спросите, находится ли задуманное число на соответствующей карточке, и в зависимости от ответа оставите или отбросите надетые на карандаш перфокарты), у вас останется одна-единственная перфокарта. Пробитые на ней отверстия будут образовывать двоичную запись задуманного зрителем числа. Если хотите, на каждой карточке можно заранее напечатать соответствующее десятичное число. Тогда вам не надо будет каждый раз переводить числа из двоичной системы в десятичную.

В третьем фокусе перфокарты служат своего рода логической машиной, идея которой была впервые предложена английским экономистом и логиком Уильямом С. Джевонсом. В «логическом абаке», как назвал свое устройство Джевонс, используются деревянные дощечки с воткнутыми в них стальными булавками, за эти булавки дощечки можно вынимать из специальной рамки. Однако манипулировать с перфокартами ничуть не хуже, а изготовить их намного проще. Джевонс изобрел также и сложное механическое устройство, названное им «логическим пианино». Перфокарты позволяют исполнять на «логическом пианино» любое произведение.

Более того, в перфокартах заложены даже более широкие возможности, так как пианино позволяет учесть лишь четыре высказывания, а перфокарты — пять.

Пяти высказываниям А, В, С, D и Е соответствуют пять отверстий, каждое из которых в свою очередь означает двоичную цифру. Единица (или отверстие, прорезанное до края перфокарты) отвечает истинному высказыванию, нуль — ложному. Горизонтальная черточка над буквой означает, что данное высказывание ложно, в противном случае высказывание считается истинным. Каждая карточка представляет собой неповторяющуюся комбинацию истинных и ложных высказываний, а так как 32 карточки исчерпывают все возможные комбинации, их набор можно рассматривать как эквивалент так называемой таблицы истинности для сложных суждений, составленных из пяти элементарных суждений А, В, C, D и Е. Действие перфокарт лучше всего объяснить на примере, показывающем, как с их помощью можно решать задачи двузначной логики.

Следующая головоломка заимствована из одной Книги.

«Если Сара не должна выполнить поручение, его выполняет Ванда. Утверждения «Сара должна» и «Камилла не может» не могут быть истинными одновременно. Если Ванда выполняет поручение, то Сара должна, а Камилла может выполнить его. Итак, Камилла всегда может выполнить поручение. Правильно ли такое заключение?»

Чтобы решить эту задачу, возьмем колоду наших перфокарт (расположение карт в колоде роли не играет). Поскольку в условии задачи фигурируют лишь три высказывания, будем рассматривать только три отверстия А, В и С.

А — Сара должна.

А  — Сара не должна.

В — Ванда выполняет поручение.

В — Ванда не выполняет поручения.

С — Камилла может выполнить поручение.

С — Камилла не может выполнить поручение.

Условие задачи состоит из трех посылок. Первая — «Если Сара не должна выполнить поручение, его выполняет Ванда» — сообщает нам, что комбинация А и В недопустима и мы должны изъять из колоды все карточки, на которых она встречается. Сделать это можно так. Введем карандаш в отверстие А и приподнимем его.

Все карточки, оказавшиеся на карандаше, соответствуют высказыванию А. Снимем их с карандаша, введем его в отверстие В и поднимем еще раз. На этот раз на карандаш будут надеты все карточки с запрещенной комбинацией А и В, и мы их отбросим.

Все остальные карточки сложим в одну колоду (порядок карточек и на этот раз роли не играет). Теперь мы готовы ко второй посылке: утверждения «Сара должна» и «Камилла не может» не могут быть истинными одновременно. Иначе говоря, комбинация АС недопустима. Просунув карандаш в отверстие А и подняв его, мы извлечем из колоды все карты с А, но это не те карты, которые нам нужны. Поэтому мы временно отложим их в сторону и обратимся к оставшимся картам, на которых значится А. Введя карандаш в отверстие С, извлечем карты с С. Именно на этих картахфигурирует недопустимая в силу второго условия комбинация АС, и их заведомо можно отбросить. Оставшиеся и временно отложенные карты объединяем в одну колоду.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 328; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.231 (0.095 с.)