Выбор и обоснование метода и схемы очистки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выбор и обоснование метода и схемы очистки



 

Очистка дымовых газов объектов промышленной теплоэнергетики имеет ряд особенностей. Они заключаются в то, что объём дымовых газов достаточно велик, при этом концентрация SO2 в указанных газах составляет всего (0,1 ÷ 0,25) % по объёму. Современные методы улавливания диоксида серы в столь больших потоках газовых выбросов пока ещё не позволяют очищать их до санитарных норм, поэтому снижение SO2 в дымовых газах промышленной теплоэнергетики осуществляется двумя путями:

предварительное удаление серы из топлива;

очистка дымовых газов в ходе или после процесса сжигания топлива.

При выборе технологической схемы очистки выбросов целесообразно применить метод, для реализации которого необходимы минимальные капитальные и эксплуатационные затраты, а также существует возможность рекуперации уловленных веществ с возможностью их дальнейшей реализации.

В промышленности применяется несколько способов очистки выбросов от диоксида серы. Наибольшее распространение, среди сухих и мокрых методов очистки, получили адсорбционный и абсорбционный методы.

Адсорбционный метод целесообразно применять при очистке выбросов, содержащих однотипные загрязняющие вещества с концентрацией не менее 1,0 - 1,5 г·м3, плохо растворимые в воде. При меньших значениях концентраций загрязняющих веществ и сложном составе реализация метода существенно затрудняется в следствии высоких затрат на обслуживание адсорбционной установки и необходимости решения вопросов, по обращению с образующимися отходами. При очистке относительно концентрированных выбросов, загрязненных малорастворимыми в воде загрязнителями, метод позволяет достигнуть реального экономического эффекта за счет рекуперации уловленных компонентов.

Среди сухих способов улавливания диоксида серы, в наибольшей степени исследован и опробован в производственных условиях, адсорбционный с использованием углеродных поглотителей (в основном активные угли и полукоксы), позволяющих проводить обработку газов при 110 - 150°С.

Динамическая активность углеродных адсорбентов по диоксиду серы при содержании его в газах 0,5% (об.) в интервале температур 50-100°С находится в пределах 3-43 г/кг. В присутствии в очищаемых газах кислорода и паров воды величина адсорбции возрастает, а поглощение углеродными адсорбентами диоксида серы сопровождается каталитическими процессами окисления, приводящими к образованию серной кислоты, концентрация которой определяется условиями сорбции и влагосодержанием обрабатываемого газового потока.

Разработанные способы улавливания диоксида серы углеродными адсорбентами ("Reinluft" и "Lurgi" в ФРГ, "Hitashi" в Японии, "Westvaco" в США) ввиду дефицитности и высокой стоимости адсорбентов могут быть рекомендованы лишь для обработки относительно небольших объемов отходящих газов в производствах серной кислоты и целлюлозы, на нефтеперерабатывающих предприятиях и в ряде других процессов.

Сорбционная способность силикагелей по диоксиду серы высокая даже при температурах 150-200°С и низких концентрациях целевого компонента в газах, что объясняется происходящим окислением адсорбированного SO2 в SO3 кислородом, содержащимся в обрабатываемых потоках. Регенерацию насыщенного поглотителя ввиду его негорючести можно проводить нагретым воздухом. Если в очищаемых газах содержатся пары воды, величина поглощения силикагелями диоксида серы резко уменьшается.

В качестве поглотителей диоксида серы из газов исследованы ионообменные смолы - аниониты. Их сорбционная способность по диоксиду серы практически не зависит от концентрации указанного компонента в газе и влагосодержания обрабатываемого потока. Оптимальные температуры газоочистки находятся в интервале 25 - 60°С. Использование ионообменников предусматривает тщательную очистку обрабатываемых газов от твердых взвешенных примесей. Регенерация насыщенных по диоксиду серы анионитов возможна раствором гидроксида натрия.

Как эффективные агенты улавливания диоксида серы из отходящих газов зарекомендовали себя кислотостойкие цеолиты, в том числе природные (в основном клиноптилолит и морденитсодержащие породы).

Способность цеолитов поглощать значительные количества диоксида серы при повышенных температурах и низких концентрациях SO2 в газах выгодно отличает их от других промышленных адсорбентов при использовании в процессах санитарной газоочистки. В то же время, присутствующая в обрабатываемых газах влага ухудшает поглощение SO2 цеолитами. Наряду с этим цеолиты катализируют реакцию окисления SO2 в SO3, что приводит к накоплению последнего в цеолитах и постепенной их дезактивации по отношению к SO2. Негативной стороной использования цеолитов является проблема их утилизации, а также значительные энергозатраты на десорбцию насыщенных поглотителей и другие обстоятельства.

Описанные методы очистки газов от диоксида серы требует значительных затрат тепла на регенерацию. Их реализация связана также с повышенными капитальными затратами ввиду необходимости выполнения адсорбционной аппаратуры из дорогостоящих специальных материалов, поскольку она предназначается для работы в условиях коррозионных сред при повышенных температурах.

Для санитарной очистки слабосернистых промышленных газовых выбросов может быть применен диоксид свинца в качестве поглотителя диоксида серы.

Также применяется электрическая очистка газов от окислов серы с помощью импульсных электронных пучков облучением потока смеси дымовых газов с водяными парами электронным пучком в направлении, перпендикулярном потоку. Облучение осуществляют импульсно-периодическим электронным пучком. Таким методом очищают дымовые газы.

Практическое использование вышеперечисленных способов достаточно сложно с технической точки зрения и сопряжено со значительными экономическими затратами.

Среди методов мокрой очистки выбросов широко применяется абсорбционный метод. Его целесообразно применять при очистке от парогазообразных загрязняющих веществ кислого или щелочного характера.

Для очистки выбросов абсорбционным методом в промышленности чаще всего используются насадочные абсорберы, абсорберы с взвешенным слоем насадки (ВН), скрубберы (полые и Вентури) и барботажные абсорберы (тарельчатые).

При выборе конструкции абсорбера учитываются следующие параметры: удельный расход абсорбента (l0), число единиц переноса (Nог), фиктивную линейную скорость (ω) потока газовой смеси, возможность протекания химической реакции в абсорбенте, лимитирующее сопротивление процессу массоотдачи, степень рециркуляции абсорбента.

В ряде случаев, замена насадочного абсорбера на абсорбер со взвешенным слоем насадки позволяет исключить из схемы очистки специальный пылеулавливающий аппарат [1].

В качестве абсорбентов используются водно-щелочные и водно-кислотные растворы, сточные и оборотные воды, суспензии солей щелочных и щёлочноземельных металлов, которые могут быть использованы в дальнейшем в качестве технологических растворов. Предпочтение в выборе абсорбентов отдаётся технологическим растворам, использование которых даёт возможность возвратить уловленный SO2 в производственный цикл вместе с технологическим раствором. При использовании в качестве абсорбентов сточных и оборотных вод, целесообразно, что бы они содержали в качестве активного компонента вещества, способные образовывать труднорастворимые или легколетучие соединения с загрязняющими веществами, легко выводимые из систем газоочистки. Примером такого способа является известняковый (известковый) способ очистки газов от диоксида серы. В данном случае труднорастворимое соединение легко выводятся из системы, однако при этом необходимо решать вопрос его полезного использования. Реализация такого метода во многом определяется технологией утилизации осадка, спросом и ценой на продукт его утилизации.

Для очистки газов от сернистых соединений применяют несколько способов, но наиболее полно разработаны три метода, основанных на селективном поглощении диоксида серы: аммиачно-циклический, магнезитовый и известковый.

Известковый метод.

Газ поступает в скруббер, орошаемый известковым раствором:

 

SO2 + Ca(OH)2 = CaSO3 + H2O+ SO2 = CaSO3 + CO23 + 1/2O2 = CaSO4

 

В настоящее время разработано множество вариантов этого метода. Наиболее простые схемы, обеспечивающие низкие капитальные затраты дают возможность получать неутилизируемый шлам, состоящий из смеси солей кальция. При этом шлам после обезвоживания подвергают захоронению (сбрасывают в отвал). В более сложных схемах за счет дополнительного узла окисления возможно получение в качестве продукта утилизации - влажного гипса, который после соответствующей подготовки, отвечает требованиям строительной промышленности. Степень очистки этим методом достигает 98%.

Аммиачный метод.

Основан на взаимодействии диоксида серы с водными растворами сульфита аммония.


SO2 + 2NH3 + H2O = (NH4)2SO3+ (NH4)2SO3 + H2O = 2NH4HSO3

 

В зависимости от способа разложения бисульфита аммония различают несколько вариантов этого метода:

аммиачно-циклический метод. Заключается в поглощении диоксида серы растворами сульфит-бисульфит аммония при низкой температуре и выделении его при нагревании, степень извлечения диоксида серы - 90 %;

аммиачно-автоклавный. Сульфит и бисульфит аммония нагревают в автоклаве при 140-160°С с получением товарных продуктов: S и (NH4)2SO4;

при обработке бисульфита аммония серной кислотой выделяющийся SO2 используют для производства H2SO4 - аммиачно-сернокислотный метод;

при обработке бисульфита аммония азотной (фосфорной) кислотой -аммиачно-азотнокислотный (фосфорнокислотный). При этом образуется диоксид серы, азотные и фосфорные удобрения.

Аммиачные методы относительно экономичны и эффективны, недостаток их - безвозвратные потери дефицитного продукта - аммиака.

Магнезитовый метод.

Основан на взаимодействии диоксида серы с суспензией оксида магния:

 

MgO + SO2 + 6Н2О = MgSO3·6Н2О

 

Сульфит магния отфильтровывают, сушат и разлагают термически (900 ÷ 1000 ºС), при этом получается чистый SO2, который используется как сырье для получения серной кислоты. Преимущества метода - степень очистки до 95 - 96 %, возможность очистки запыленных газов с высокой температурой, отсутствие отходов и сточных вод. Но способ громоздок, требуются значительные капитальные и эксплуатационные расходы (на регенерацию поглотителя), применяется редко - в основном на установках, которые работают на сернистом топливе.

В данной работе предпочтение отдаётся известковому методу абсорбционной очистки с применением абсорбера со взвешенным слоем насадки, поскольку он имеет ряд преимуществ перед другими методами очистки выбросов ТЭЦ. Достоинством этого метода является простота технологической схемы, низкие эксплуатационные затраты, дешевизна применяемого сорбента, возможность очистки газа без предварительного обеспыливания, что значительно упрощает схему очистки и позволяет снизить затраты на оборудование вследствие исключения из схемы очистки специального пылеулавливающего аппарата, а также существование возможности рекуперации уловленных веществ, реализация которых позволяет в кратчайшие сроки окупить стоимость очистного оборудования.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-27; просмотров: 144; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.170.188 (0.021 с.)