Биохимические показатели азотистых компонентов мочи 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биохимические показатели азотистых компонентов мочи



Особенности обмена в почках

Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии, выделяемой при метаболических реакциях. Не менее 8–10% всего поглощаемого человеком в покое кислорода используется на окислительные процессы в почках. Потребление энергии на единицу массы в почках больше, чем в любом другом органе.

В корковом веществе почки ярко выражен аэробный тип обмена веществ. В мозговом веществе преобладают анаэробные процессы. Почка относится к органам, наиболее богатым ферментами. Большинство этих ферментов встречается и в других органах. Так, ЛДГ, АсАТ, АлАт, глутаматдегидрогеназа широко представлены как в почках, так и в других тканях. Вместе с тем имеются ферменты, которые в значительной степени специфичны для почечной ткани. К таким ферментам прежде всего относится глицин-амидинотроансфераза (трансамидиназа). Данный ферментсодержится в тканях почек и поджелудочной железы и практически отсутствует в других тканях. Глицин-амидинотрансфераза осуществляет перенос амидиновой группы с L-аргинина на глицин с образованием L-орнитина и гликоциамина:

L-аргинин +Глицин—>L-орнитин+ Гликоциамин.

Эта реакция является начальным этапом синтеза креатина (см. главу 20). Глицин-амидинотрансфераза была открыта еще в 1941 г., но только в 1965 г. У. Хорнер и соавт., а затем С.Р. Мардашев и А.А. Карелин (1967) впервые отметили диагностическую ценность определения фермента в сыворотке крови при заболевании почек. Появление данного фермента в крови может быть связано либо с поражением почек, либо с начинающимся или развившимся некрозом поджелудочной железы.

Наивысшая активность глицин-амидинотрансферазы в сыворотке крови наблюдается при хроническом пиелонефрите в фазе нарушения азотовыде-лительной функции почек, а далее в убывающем порядке следуют хронический нефрит с гипертензионным и отечно-гипертензионным синдромами и умеренным нарушением азотовыделительной способности, хронический нефрит с изолированным мочевым синдромом без нарушения азотовыдели-тельной функции, остаточные явления острого диффузного гломерулонеф-рита.

Ткань почек относится к типу тканей с высокой активностьюизофермен-тов ЛДГ1 и ЛДГ2. При изучении тканевых гомогенатов различных слоев почек обнаруживается четкая дифференциация изоферментных спектров ЛДГ. В корковом веществе преобладаетактивность ЛДГ1 и ЛДГ2, а в мозговом – ЛДГ5 и ЛДГ4. При острой почечной недостаточности в сыворотке крови повышается активностьанодных изоферментов ЛДГ, т.е. изофермен-тов с высокой электрофоретической подвижностью (ЛДГ1 и ЛДГ2).

Определенный интерес представляет также исследование изоферментов аланинаминопептидазы (ААП). Известны 5 изоферментов ААП. В отличие от изоферментов ЛДГ изоферменты ААП определяются в различных органах не в виде полного спектра (5 изоферментов), а чаще как один изофермент. Так, изоферментAA1представлен главным образом в ткани печени, ААП2 – в поджелудочной железе, ААП3 – в почках, ААП4 и ААП5 – в различных отделах стенки кишки. При повреждении ткани почек изофер-мент ААП3 обнаруживается вкрови и моче, что является специфическим признаком поражения почечной ткани.

Не менее важно в диагностике заболеваний почек исследование активности ферментов мочи. При острых воспалительных процессах в почках прежде всего отмечается повышенная проницаемость клубочковыхмембран, что обусловливает выделение белка, в том числе ферментов, с мочой. В целом сдвиги в обмене веществ почечной ткани могут быть вызваны блокадой клубочкового кровотока, нарушением фильтрации и реабсорбции, блокадой оттока мочи, поражением юкстагломерулярного аппарата, нарушением секреции и т.д.

 

Состав мочевых камней

Ураты. Это мочевые камни, состоящие из мочевой кислоты (C5H4N4О3) и ее солей. Они относятся к так называемым органическим камням, поскольку в неживой природе нет подобного рода кристаллов. Все авторы, занимающиеся изучением такого рода мочевых камней, отмечают одну характерную особенность: в большинстве своем кристаллическая часть этой группы мочевых камней состоит из мочевой кислоты, в меньшей степени — из ее солей. Для удобства эту группу называют уратами. Частота встречаемости уратов колеблется в пределах 1-18%. В зависимости от места нахождения (почка, мочевой пузырь) ураты и принимают соответствующую форму. Чаще они округлые, со слегка шероховатой поверхностью, довольно плотные, цвет больше желтый. Мочевая кислота

Кристаллы мочевой кислоты. Текстура их примерно такая же, как у оксалатов и фосфатов. Соли — ураты, входящие в состав мочевых камней: урат аммония, натрия, кальция (очень редко). Цвет кристаллов мочевой кислоты зависит от включения пигментных молекул в кристаллическую решетку. Они имеют различную форму, нередко гроздевидную, больших размеров. Мочевая кислота и ее соли образуются лишь в процессе жизнедеятельности организма вследствие окислительных процессов при переработке белка. Среди многих причин немаловажное место в синтезе продуктов принадлежит и кислороду, недостаток которого способствует образованию мочевой кислоты и ее солей. Чаще других кристаллы мочевой кислоты и ее солей встречаются в сочетании с фосфатами.

Из другой группы органических мочевых камней цистиновые, например, встречаются в 0,5-2%. Цистиновые камни состоят из сернистых соединений аминовой кислоты, имеют округлую форму, желто-белого или светло-коричневого цвета, мягкой консистенции. Ксантиновые камни в основном содержат в своем составе мочевую кислоту, имеют темно-коричневый цвет, образуются вследствие нарушения пуринового обмена. Все остальные мочевые камни встречаются очень редко. Это касается и белковых камней, которые нередко рассматриваются как матрица будущего камня без кальция, фосфата и др.

 

 

ЭМАЛЬ

Содержит гидроксилапатит, фторапатит, фторид кальция. Соотношение кальций/фосфор в эмали равно 1,75, поэтому эмаль еще более минерализирована, чем кость. С возрастом это соотношение доходит до 2,09. Органическое вещество эмали образуют в основном белки - амелогенины. Основная функция этих белков - формирование нерастворимой органической матрицы эмали, которая затем минерализируется благодаря особому кальций-связывающему белку эмали. В состав эмали также могут входить глюкозаминогликаны и цитрат. Особенности метаболизма эмали - это крайне низкая скорость обмена. Обмен ионами возможен со стороны полости рта - через слюну.

ДЕНТИН.

Дентин в отличие от эмали содержит много сиалопротеинов (это неколлагеновые белки). По степени минерализации дентин аналогичен компактному веществу костной ткани. Минеральный компонент - гидроксилапатит, в котором чаще, чем в кости, обнаруживается магний. Фтористые соли также содержатся в дентине. В состав органического вещества дентина входит коллаген, богатый фосфатом, хондроитинсульфаты, гиалуроновая кислота. При развитии кариеса в поврежденном дентине и уменьшается количество оксипролина и оксилизина и растет количество глюкозаминогликанов. Клеточные элементы - одонтобласты.

 

ЦЕМЕНТ

Цемент еще менее минерализован, чем дентин. Здесь больше воды и протеогликанов. Клеточные элементы - цементобласты.

ПУЛЬПА.

Это особая соединительная ткань, похожая на эмбриональную соединительную ткань. Поскольку пульпа наиболее метаболически активна, в ней много ферментов. Кроме фибропластов, в пульпе есть и жировые клетки. В межклеточном веществе - гликопротеины, глюкозаминогликаны. Волокнистая структура пульпы - это тонкие коллагеновые волокна. Функция пульпы: формирование дентина и обеспечение метаболических процессов в дентине.

Костная ткань - это особый вид соединительной ткани. Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. В ней преобладает межклеточное вещество, содержащее большое количество минеральных компонентов, главным образом - солей кальция. Основные особенности кости - твердость, упругость, механическая прочность.

 

В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом (смотрите рисунок) и аморфным фосфатом кальция. Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата. Химический состав костной ткани (в%%): 20% - органический компонент, 70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%.

Особенность минерального компонента в том, что фактическое соотношение кальций/фосфор равно 1,5, хотя расчетное соотношение должно быть 1,67. Это позволяет кости легко связывать или отдавать ионы фосфата, поэтому кость - это депо для минералов, особенно для кальция.

 

 

Слюна

   

 

Количество 1000—1500 мл/сут
Относительная плотность 1002—1008
6,0—7,9

 


Химический состав слюны  

 

Составная часть Содержимое в мг% Единицы СИ
Азот (небелковый) 13,0 (37 % азота крови) 9,28 ммоль/л
Аммиак 2,0—10,0 1,2—6 мкмоль/л
Белок 200,0—400,0 0,2—0,4 г/л
Кальций (общий) 4,0—8,0 1—2 ммоль/л
Карбонаты (СО2) 20—45 мл/100 мл  
Мочевая кислота 1,5 (40 % мочевой кислоты крови) 0,088 ммоль/л
Мочевина 11,0 (76% мочевины крови) 1,83 ммоль/л
Калий 19—23 мэкв/л 19—23 ммоль/л
Фосфор:    
липидов 0,005—0,2 0,0016—0,064 ммоль/л
неорганический 10,0—25,0 3,2—8,08 ммоль/л
Хлориды 30,0—60,0 8,46—16,9 ммоль/л
Холестерин 2,5—9,0 0,065—0,233 ммоль/л


Желудочный сок

   

 

Количество 2—3 л/сут
Относительная плотность  
рН 1,6—1,8

 


Химический состав желудочного сока  

 

Составная часть Единицы Единицы СИ
Азот:    
небелковый 20—48 мг% 14,3—34,3 ммоль/л
мочевины и аммиака 7—14 мг% 4,99—9,99 ммоль/л
аминокислот 2—8 мг% 1,43—5,7 ммоль/л
Хлориды 550 мг% 155,1 ммоль/л
Свободная хлористоводородная кислота 200 мг% 20 ммоль/л
Мочевая кислота 0,8—2 мг% 47,6—118,9 мкмоль/л
Калий 21,8—137,7 мг% 5,6—35,3 мэкв/л (ммоль/л)
Натрий 72—435,4 мг% 31,3—189,3 мэкв/л (ммоль/л)

 

Биохимия нервной ткани.

Свойства

Кофейная кислота представляет из себя желтые, моноклинные кристаллы, растворимые в воде и спирте, трудно растворимые в эфире.

Биологическая роль

Кофейная кислота содержится во всех растениях, так как является промежуточным продуктом в биосинтезе лигнина и других биологически активных веществ.

 

Изопреноиды

Основным биогенетическим предшественником всех изопреноидов является изопрен (2-метилбутадиен-1,3) — разветвленный ненасыщенный углеводород из пяти углеродных атомов. В организмах животных и в растениях активный изопрен, 5-изопентенилдифосфат, служит исходным соединением для биосинтеза линейных и циклических олигомеров и полимеров. У приведенных на схеме произвольно выбранных представителей этого большого класса соединений внизу (l =) указано число содержащихся в них изопреновых звеньев.

От активного изопрена главный путь биосинтеза ведет через димеризацию к активному гераниолу (l = 2) (геранилдифосфату), а затем к активному фарнезолу (l = 3) (фарнезилдифосфату). Здесь основной путьбиосинтеза терпенов разветвляется. Последовательное наращивание цепи фарнезола изопреновыми звеньями (по схеме «голова к хвосту») приводит к полимерам с возрастающим количествам изопреновых звеньев: фитолу (l = 4), долихолу (l=14-24), наконец, к каучуку (l = 700-5000). Альтернативный путь —конденсация двух молекул фарнезола по схеме «голова к голове» — приводит к сквалену (l = 6), который может подвергаться окислительной циклизации с образованием холестерина (l = 6) и других стероидов.

Способность синтезировать специфические изопреноиды свойственна лишь отдельным видам животных и растений. Так, натуральный каучук синтезируется лишь немногими видами растений, главным образом каучуконосом гевея бразильская (Неvеа brasiliensis). Некоторые изопреноиды играют важную роль вметаболизме, но не могут синтезироваться в организме человека. К этой группе относятся витамины A, D, E и К. Из-за структурного и функционального сродства со стероидными гормонами витамин D относят к гормонам(см. рис. 63, 323).

Метаболизм изопрена в растениях весьма многообразен. В растениях на основе изопрена синтезируется множестве душистых веществ и эфирных масел. В качестве примера здесь приведены терпены ментол (l = 2),камфора (l = 2) и цитронеллол (l = 2). Соединения из трех изопреновых звеньев (l = 3) называютсясесквитерпенами, а стероиды (l = 6) — тритерпенами.

Наиболее важной группой изопреноидов являются соединения, обладающие гормональными и сигнальными функциями. К этой группе относятся стероидные гормоны (l = 6), ретиноевая кислота (l = 4) позвоночных, а также ювенильные гормоны (l = 3) насекомых. К классу изопреноидов относятся также некоторые растительные гормоны, например цитокинины, абсцизовая кислота и брассиностероиды.

Полиизопреновые цепи иногда выступают в роли липидного «якоря», с помощью которого молекулы белковили других соединений удерживаются на мембране. Группа коферментов с изопреноидным якорем включаетубихинон (кофермент Q; l = 6-10), пластохинон (l = 9) и менахинон (витамин K2, l = 4-6). В молекулехлорофилла также имеется липидный якорь в виде остатка фитила (l = 4). Некоторые белки также удерживаются на мембране благодаря наличию изопренильного фрагмента (см. с. 232).

Иногда изопреновая группа используется для химической модификации соединений других классов. В качестве примера можно привести модифицированный нуклеотид N6-изопентенил-АМФ (N6-изопентенил-АМР), входящий в состав некоторых тРНК.

Биохимические показатели азотистых компонентов мочи

Изучение азотистых компонентов мочи имеет определенное значение для суждения о течении и направленности белкового обмена, поскольку конечные продукты обмена в основном выводятся из организма почками. Известно, что выделение азота из организма подвержено различным влияниям и зависит от возраста, количества и качества белка в рационе. Полученные нами данные свидетельствуют о том, что выведение азота с суточной мочой у детей разного возраста неодинаково, но эти различия недостоверны. Как видно из таблицы 6.3, у исследованных детей 3-6 лет выведение суточного азота составляло в среднем 7,1±0,5 г.

Таблица 6.3

Выведение отдельных фракций азота с мочой у детей на фоне фактического питания (М±m)

Возрастлет Масса тела,кг Поступило белка в сутки, г/кг Выделено с мочой в сутки Относительное количество азота аммиака, % Индекс Waterlooy
      Общей азот, г Аммиак, г Мочевина, г    
3,5   4,0±0,3 6,8±0,3 210±20 2,9±0,1 4,8±0,3 19,8±0,4
    3,0±0,3 7,1±0,5 284±27 3,0±0,1 3,2±0,2 19,7±0,2
    4,0±0,8 7,6±0,6 288±29 3,1±0,1 3,1±0,2 19,0±0,3
В среднем   3,6±0,4 7,1±0,5 260±25 3,0±0,2 3,7±0,2 19,5±0,3

При оценке полученных нами данных следует принять во внимание то. что если у взрослых по величине суточного азота мочи можно судить о количестве усвоенного белка, то у детей, учитывая наличие у них положительного азотистого баланса, т.е. задержку азота в организме, связанную с интенсивными процессами синтеза белков, это возможно лишь при проведении балансовых исследований.

Сопоставление наших данных с материалами других авторов, проводивших аналогичные исследования у здоровых детей, показало, что выделение суточного азота с мочой у обследованных нами детей находится ниже возрастных колебаний, приближаясь к их нижним границам. Так, по данным Князьков В.И., Козловского В.С. 1989, у детей младших возрастных групп уровень азота мочи составляет 5-10 г, в старших возрастных группах — 9-10 г в сутки. Средние значения выводимого азота, установленные Волгаревым М.Н. 1987, Davis F.A. 1996, укладываются в пределы указанных колебаний.

Данных балансовых исследований и изучения азотистых компонентов мочи у детей, посещающих ДДУ, в литературе нам найти не удалось. Имеются работы, указывающие на низкий азотистый баланс у детей грудного возраста при пневмониях (Frances J., 1991) и у детей от 3 до 15 лет без выделения возрастных групп (А.С.Худайберганов, 1993).

Для более полной характеристики белкового обмена необходимо изучать не только выведение общего азота, но и его отдельных фракций. Среди них ведущее положение занимает мочевина, азот которой в составе суточного азота мочи составляет наиболее значительную часть.

Полученные нами данные (таблица 6.3.) показывают, что дети 3-6 лет на фактическом фоне питания выводят в среднем 3,0±0,1 мочевины, причем увеличение абсолютного выведения мочевины, происходит параллельно аналогичному увеличению выведения общего азота мочи. Однако, для суждения о течении белкового обмена в организме, большое значение имеет не столько абсолютное количество выводимой мочевины, сколько относительное содержание азота мочевины (%) в составе суточного азота мочи, так называемый показатель мочевины, так как установлена определенная взаимосвязь последнего с количеством белка в рационе питания. При этом необходимо учитывать, что мочевинный показатель не отражает физиологического или пищевого статуса человека, а целиком зависит от содержания белков в рационе за 2-3 дня, предшествовавших исследованию.

В норме азот мочевины составляет 85-90% от общего суточного азота мочи (Л.А. Мостовая, Л.С.Яковлева, 1989). При уровне последнего 60% и менее можно говорить о снижении индекса. В случаях значительного дефицита в рационах белка, способного вызвать истощение лабильных «белковых резервов», мочевинный индекс снижается до 40-50% и может служить в подобных условиях косвенным подтверждением клинически выраженного недостатка белка в пищевом статусе.

В наших исследованиях мочевинный индекс составляет в среднем 42,25±0,2% (3,0±0,1 г азота мочевины от 7,1±0,5 г общего азота мочи). Таким образом, мочевинный индекс у всех обследованных нами детей ниже физиологических колебаний.

Одним из азотистых компонентов является аммиак, концентрация которого в суточной моче при белковой недостаточности может изменяться. Установлено, что выраженная белковая недостаточность сопровождается увеличением процентного содержания аммиачного азота в составе суточного азота мочи (Л.А.Мостовая, Л.С.Яковлева, 1989).

Суточная экскреция аммиака с мочой у обследованных нами детей на фактическом фоне питания составляла в среднем 260±25,0 мг в сутки. Абсолютное количество аммиака, выявленное нами, значительно превышает данные Л.А.Мостовой, Л.С.Яковлевой (1989), установивших, что здоровые дети дошкольного возраста выводят 113-153 мг аммиака в сутки с относительным количеством азота аммиака для детей 3-6 лет — 1,5-2%.

Высокое выведение абсолютно количества аммиака у исследуемых детей на фактическом фоне питания с суточной мочой является еще одним свидетельством низкого поступления белка с пищей.

Таким образом, изучение биохимических показателей азотистых компонентов мочи у детей 3-6 лет, посещающих ДДУ, на фактическом фоне питания показало, что имеется прямая корреляционная связь между поступлением с пищей белка на 1 кг массы тела и экскрецией общего азота и мочевины (r=±0,62).

Выявлено нами низкая экскреция общего азота, и мочевины, относительно высокое количество аммиака, по отношению к общему азоту суточной мочи, высокая экскреция количества аммиака, о мочевинного индекса у обследованных детей указывает на недостаточное поступление белка в организм детей на фоне низкой биологической ценности рационов питания.

 

 

Особенности обмена в почках

Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии, выделяемой при метаболических реакциях. Не менее 8–10% всего поглощаемого человеком в покое кислорода используется на окислительные процессы в почках. Потребление энергии на единицу массы в почках больше, чем в любом другом органе.

В корковом веществе почки ярко выражен аэробный тип обмена веществ. В мозговом веществе преобладают анаэробные процессы. Почка относится к органам, наиболее богатым ферментами. Большинство этих ферментов встречается и в других органах. Так, ЛДГ, АсАТ, АлАт, глутаматдегидрогеназа широко представлены как в почках, так и в других тканях. Вместе с тем имеются ферменты, которые в значительной степени специфичны для почечной ткани. К таким ферментам прежде всего относится глицин-амидинотроансфераза (трансамидиназа). Данный ферментсодержится в тканях почек и поджелудочной железы и практически отсутствует в других тканях. Глицин-амидинотрансфераза осуществляет перенос амидиновой группы с L-аргинина на глицин с образованием L-орнитина и гликоциамина:

L-аргинин +Глицин—>L-орнитин+ Гликоциамин.

Эта реакция является начальным этапом синтеза креатина (см. главу 20). Глицин-амидинотрансфераза была открыта еще в 1941 г., но только в 1965 г. У. Хорнер и соавт., а затем С.Р. Мардашев и А.А. Карелин (1967) впервые отметили диагностическую ценность определения фермента в сыворотке крови при заболевании почек. Появление данного фермента в крови может быть связано либо с поражением почек, либо с начинающимся или развившимся некрозом поджелудочной железы.

Наивысшая активность глицин-амидинотрансферазы в сыворотке крови наблюдается при хроническом пиелонефрите в фазе нарушения азотовыде-лительной функции почек, а далее в убывающем порядке следуют хронический нефрит с гипертензионным и отечно-гипертензионным синдромами и умеренным нарушением азотовыделительной способности, хронический нефрит с изолированным мочевым синдромом без нарушения азотовыдели-тельной функции, остаточные явления острого диффузного гломерулонеф-рита.

Ткань почек относится к типу тканей с высокой активностьюизофермен-тов ЛДГ1 и ЛДГ2. При изучении тканевых гомогенатов различных слоев почек обнаруживается четкая дифференциация изоферментных спектров ЛДГ. В корковом веществе преобладаетактивность ЛДГ1 и ЛДГ2, а в мозговом – ЛДГ5 и ЛДГ4. При острой почечной недостаточности в сыворотке крови повышается активностьанодных изоферментов ЛДГ, т.е. изофермен-тов с высокой электрофоретической подвижностью (ЛДГ1 и ЛДГ2).

Определенный интерес представляет также исследование изоферментов аланинаминопептидазы (ААП). Известны 5 изоферментов ААП. В отличие от изоферментов ЛДГ изоферменты ААП определяются в различных органах не в виде полного спектра (5 изоферментов), а чаще как один изофермент. Так, изоферментAA1представлен главным образом в ткани печени, ААП2 – в поджелудочной железе, ААП3 – в почках, ААП4 и ААП5 – в различных отделах стенки кишки. При повреждении ткани почек изофер-мент ААП3 обнаруживается вкрови и моче, что является специфическим признаком поражения почечной ткани.

Не менее важно в диагностике заболеваний почек исследование активности ферментов мочи. При острых воспалительных процессах в почках прежде всего отмечается повышенная проницаемость клубочковыхмембран, что обусловливает выделение белка, в том числе ферментов, с мочой. В целом сдвиги в обмене веществ почечной ткани могут быть вызваны блокадой клубочкового кровотока, нарушением фильтрации и реабсорбции, блокадой оттока мочи, поражением юкстагломерулярного аппарата, нарушением секреции и т.д.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 218; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.78.30 (0.043 с.)