Архитектурные особенности проектирования операционных систем 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Архитектурные особенности проектирования операционных систем



В общем случае «структура» монолитной ОС представляет собой как раз отсутствие структуры. Такая ОС написана как набор процедур, каждая из которых может вызывать другие, когда ей это нужно. При использовании этой техники каждая процедура системы имеет хорошо определенный интерфейс в терминах параметров и результатов, и каждая может вызвать любую другую для выполнения некоторой нужной для нее полезной работы. Для построения монолитной системы необходимо скомпилировать все отдельные процедуры, а затем связать их вместе в единый объектный файл с помощью компоновщика. Каждая процедура видит любую другую процедуру. Однако даже такие монолитные системы могут быть «немного» структурированными. При обращении к системным вызовам, поддерживаемым ОС, параметры помещаются в строго определенные места, такие, как регистры или стек, а затем выполняется специальная команда прерывания, известная как вызов ядра или вызов супервизора. Эта команда переключает машину из режима пользователя в режим ядра, называемый также режимом супервизора, и передает управление ОС. Затем ОС проверяет параметры вызова для того, чтобы определить, какой системный вызов должен быть выполнен. После этого ОС индексирует таблицу, содержащую ссылки на процедуры, и вызывает соответствующую процедуру. Такая организация ОС предполагает следующую структуру:

1. Главная программа, которая вызывает требуемые сервисные процедуры;

2. Набор сервисных процедур, реализующих системные вызовы;

3. Набор утилит, обслуживающих сервисные процедуры.

Обобщением предыдущего подхода является организация ОСкак иерархии уровней. Уровни образуются группами функций операционной системы, таких как файловая система, управление процессами и устройствами и т.п. Каждый уровень может взаимодействовать только со своим непосредственным соседом – выше- или нижележащим уровнем. Прикладные программы или модули самой операционной системы передают запросы вверх и вниз по этим уровням.

Модель клиент-сервер – это один из возможных подходов к структурированию ОС. В широком смысле модель клиент-сервер предполагает наличие, во-первых, программного компонента – потребителя какого-либо сервиса, то есть клиента, и во-вторых, программного компонента – поставщика этого сервиса, то есть сервера. Взаимодействие между клиентом и сервером стандартизуется, так что сервер способен обслуживать клиентов, реализованных различными способами и, может быть, разными производителями. Инициатором обмена обычно является клиент, который посылает запрос на обслуживание серверу, находящемуся в состоянии ожидания запроса. Один и тот же программный компонент может быть клиентом по отношению к одному виду услуг, и сервером для другого вида услуг. Применительно к структурированию операционной системы идея состоит в разбиении ОС на несколько процессов – серверов, каждый из которых выполняет отдельный набор сервисных функций, например, управление памятью, создание или планирование процессов.

 

 

Управление памятью

Память является важнейшим ресурсом, требующим тщательного управления со стороны операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой.

Для идентификации команд и переменных используются символьные имена (метки), виртуальные адреса и физические адреса.

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае неизвестно, в какое место оперативной памяти будет загружен процесс, то транслятор присваивает командам и переменным виртуальные (условные) адреса, обычно считая по умолчанию, что процесс будет размещен, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре ВМ, и, как правило, не совпадает с объемом физической памяти, имеющимся в машине.

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены команды и переменные. Переход от виртуальных адресов к физическим может осуществляться двумя способами.

 

Самым простым способом управления оперативной памятью является разделение ее на несколько разделов фиксированной величины. Это может быть выполнено вручную администратором во время старта системы или во время ее генерации. Очередной процесс, поступивший на выполнение, помещается либо в общую очередь, либо в очередь к некоторому разделу. Подсистема управления памятью в этом случае выполняет следующие задачи:

1) выбирает свободный раздел, размер которого достаточен для размещения поступившего на выполнение процесса;

2) осуществляет загрузку процесса и настройку адресов.

 

В случае распределения памяти разделами переменной величины память ВМ не делится заранее на разделы. Сначала вся оперативная память свободна. Каждому вновь поступившему процессу выделяется необходимая память. Если достаточный объем памяти отсутствует, то процесс не принимается на выполнение и стоит в очереди. После завершения процесса память освобождается, и на это место может быть загружен другой процесс.

Задачами операционной системы при реализации данного метода управления памятью являются следующие:

1) ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти;

2) при поступлении нового процесса – анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившего процесса;

3) загрузка процесса в выделенный раздел и корректировка таблиц свободных и занятых областей;

4) после завершения процесса – корректировка таблиц свободных и занятых областей.

 

виртуальная память – это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, которые для своей реализации требуют такие объемы памяти, которые превосходят реально существующие объемы оперативной памяти ВМ. Для этого виртуальная память решает следующие задачи:

1) размещает процессы в запоминающих устройствах разного типа, например, часть – в оперативной памяти, а часть – на диске;

2) перемещает процессы по мере необходимости между запоминающими устройствами разного типа, например, подгружает процесс или его часть с диска в оперативную память;

3) преобразует виртуальные адреса в физические.

Наиболее распространенными способами реализации виртуальной памяти является страничное, сегментное и странично-сегментное распределение памяти, а также свопинг.

При страничном распределении памяти виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера.

При сегментном распределение памяти виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п.

Странично-сегментное распределение памяти представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента.

Разновидностью виртуальной памяти является так называемый свопинг (swapping). В соответствии с методом свопинга некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск.

Рассмотрим иерархию запоминающих устройств (ЗУ) и принцип кэширования информации.

Память ВМ представляет собой иерархию ЗУ, включающую внутренние регистры процессора, различные типы сверхоперативной, оперативной и постоянной памяти, внешнюю память на магнитных дисках и других типах устройств. Разные типы ЗУ отличаются средним временем доступа и стоимостью хранения данных в расчете на один бит.

Кэширование информации –это способ организации совместного функционирования двух типов ЗУ, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования наиболее часто используемой информации из относительно более «медленного» ЗУ в более «быстрое» ЗУ.

Кэш-памятью обычно называют одно из таких взаимодействующих устройств, а именно «быстрое» ЗУ.

Высокое значение вероятности нахождения данных в кэш-памяти связано с наличием у данных объективных свойств: пространственной и временной локальности.

Под пространственной локальностью данных в кэш-памяти понимается такой случай, когда произошло обращение по некоторому адресу и с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.

Под временной локальностью данных в кэш-памяти понимается случай большой вероятности обращения по этому же адресу в ближайшее время.

Все предыдущие рассуждения справедливы и для других пар запоминающих устройств, например, для оперативной памяти и внешней памяти. В этом случае уменьшается среднее время доступа к данным, расположенным, например, на магнитном диске, а роль кэш-памяти выполняет буфер в оперативной памяти.

 

Управление вводом-выводом

Одной из главных функций ОС является управление всеми устройствами ввода-вывода ВМ. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью машины. В целях развития интерфейс должен быть одинаковым для всех типов устройств (принцип независимости от устройств).

Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства.

Блок-ориентированные устройства ввода-вывода хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство – диск.

Байт-ориентированные устройства ввода-вывода не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются мониторы, принтеры, сетевые адаптеры.

Любое внешнее устройство обычно состоит из механического и электронного компонента. Электронный компонент называют контроллером устройства или адаптером. Механический компонент представляет собственно устройство. Некоторые контроллеры могут управлять несколькими устройствами.

ОС обычно имеет дело не с устройством, а с его контроллером.

ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.

Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней, причем нижние уровни обеспечивают экранирование особенностей аппаратуры от верхних, а те, в свою очередь, обеспечивают удобный интерфейс для пользователей. Ключевым принципом является независимость от устройств ввода-вывода.

Очень близкой к идее независимости от устройств является идея единообразного именования, то есть для именования устройств должны быть приняты единые правила.

Другим важным вопросом для программного обеспечения ввода-вывода является обработка ошибок. В лучшем случае ошибки следует обрабатывать как можно ближе к аппаратуре. Если контроллер обнаруживает ошибку чтения, то он должен попытаться ее скорректировать. Если же это ему не удается, то исправлением ошибок должен заняться драйвер устройства

Еще один ключевой вопрос – это использование блокирующих (синхронных) и неблокирующих (асинхронных) передач. Большинство операций физического ввода-вывода выполняется асинхронно – процессор начинает передачу и переходит на другую работу, пока не наступает прерывание. Пользовательские программы намного легче писать, если операции ввода-вывода блокирующие. ОС выполняет операции ввода-вывода асинхронно, но представляет их для пользовательских программ в синхронной форме.

Проблема состоит также в том, что одни устройства ввода-вывода являются разделяемыми, а другие – выделенными. Диски – это разделяемые устройства, так как одновременный доступ нескольких пользователей к диску не является проблемой. Принтеры – это выделенные устройства, потому что нельзя смешивать строчки, печатаемые различными пользователями. Наличие выделенных устройств создает для операционной системы некоторые проблемы.

Для решения имеющихся проблем целесообразно разделить программное обеспечение ввода-вывода на четыре слоя:

1) обработка прерываний;

2) драйверы устройств;

3) слой операционной системы, независимый от устройств;

4) пользовательский слой программного обеспечения.

 

Весь зависимый от устройства код помещается в драйвер устройства. Каждый драйвер управляет устройствами одного типа или, может быть, одного класса. В ОС, как правило, только драйвер устройства обладает информацией о конкретных особенностях какого-либо устройства.Например, только драйвер диска имеет дело с дорожками, секторами, цилиндрами, временем установления головки и другими факторами, обеспечивающими правильную работу диска.

Большая часть программного обеспечения ввода-вывода является независимой от устройств. Точная граница между драйверами и программами, независимыми от устройств, определяется системой, так как некоторые функции, которые могли бы быть реализованы независимым способом, в действительности выполнены в виде драйверов для повышения эффективности или по другим причинам.

Типичными функциями слоя операционной системы, независимого от устройств, являются:

– обеспечение общего интерфейса к драйверам устройств;

– именование устройств;

– защита устройств;

– обеспечение независимого размера блока;

– буферизация;

– распределение памяти на блок-ориентированных устройствах;

– распределение и освобождение выделенных устройств;

– уведомление об ошибках.

 

Другой категорией программного обеспечения ввода-вывода является подсистема спулинга (spooling). Спулинг – это способ работы с выделенными устройствами в многозадачной системе. Одно из типичных устройств, требующих спулинга, – принтер. Хотя технически легко позволить каждому пользовательскому процессу открыть специальный файл, связанный с принтером, такой способ опасен из-за того, что пользовательский процесс может монополизировать принтер на произвольное время. Вместо этого создается специальный процесс-монитор, который получает исключительные права на использование этого устройства. Также создается специальный каталог, называемый каталогом спулинга. Для того, чтобы напечатать файл, пользовательский процесс помещает выводимую информацию в этот файл и помещает его в каталог спулинга. Процесс-монитор по очереди распечатывает все файлы, содержащиеся в каталоге спулинга.

Для освобождения процессора от операций последовательного вывода данных из оперативной памяти или последовательного ввода в нее был предложен механизм прямого доступа внешних устройств к памятиПДП или DMA (Direct Memory Access). Суть работы этого механизма заключается в следующем. Для того чтобы какое-либо устройство, кроме процессора, могло за­писать информацию в память или прочитать ее из памяти, необходимо чтобы это устройство могло забрать у процессора управление локальной магистралью для выставления соответствующих сигналов на шины адреса, данных и управления. Для централизации эти обязанности обычно возла­гаются не на

Файлы и файловые системы

Под файлом обычно понимают набор данных, организованных в виде совокупности записей одинаковой структуры. Для управления этими дан­ными создаются соответствующие системы управления файлами.

Файловая система – это набор спецификаций и соответствующее им про­граммное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управление ресурсами, которые используют­ся файлами. Файловая система определяет способ организации данных на диске или на каком-нибудь ином носителе данных.

Следует различать файловую систему и сте­му управления файлами. Система управления файлами является основной подсистемой в абсолютном большинстве современных ОС. Через систему управления файлами связываются по данным все системные обрабатывающие программы. С помощью этой системы решаются проблемы централизованного распределения дискового про­странства и управления данными. Благодаря использованию той или иной системы управления файлами пользователям предоставляются следующие возможности:

– создание, удаление, переименование (и другие операции) именованных набо­ров данных из своих программ или посредством спе­циальных управляющих программ, реализующих функции интерфейса пользо­вателя с его данными и активно использующих систему управления файлами;

– работа с не дисковыми периферийными устройствами как с файлами;

– обмен данными между файлами, между устройствами, между файлом и уст­ройством (и наоборот);

– работа с файлами с помощью обращений к программным модулям системы управления файлами;

– защита файлов от несанкционированного доступа.

В некоторых ОС может быть несколько систем управления файлами, что обеспе­чивает им возможность работать с несколькими файловыми системами.

Можно сказать, что основное назначение файловой системы и соот­ветствующей ей системы управления файлами – организация удобного доступа к данным, организованным как файлы, то есть вместо низкоуровневого доступа к данным с указанием конкретных физических адресов нужной записи ис­пользуется логический доступ с указанием имени файла и записи в нем.

Другими словами, термин «файловая система» определяет, прежде всего, принципы доступа к данным, организованным в файлы. А термин «система управления файлами» следует употреблять по отношению к конкретной реализации файловой системы. То есть система управления файлами – это ком­плекс программных модулей, обеспечивающих работу с файлами в конкретной операционной системе.

Жесткий диск может быть разбит на несколько разделов (partition), которые затем могут использоваться либо одной ОС, либо различными ОС. Причем в каждом разделе может быть органи­зована своя файловая система. Однако для организации даже единственной файловой системы необходимо определить, по крайней мере, один раздел.

Разделы диска могут быть двух типов – primary (первичный) и extended (расширенный). При этом на диске обязательно должен быть по крайней мере один primary-раздел. Если primary-разделов несколько, то только один из них может быть активным. Именно загрузчику, расположенному в активном разделе, передается управление при включении ВМ и загрузке ОС.

Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. Современные файловые системы, как правило, поддерживают длинные символьные имена файлов. При переходе к длинным именам возникает проблема совместимости с ранее созданными приложениями, использующими короткие имена. Чтобы приложения могли обращаться к файлам в соответствии с принятыми ранее соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.

Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые файлы состоят из строк символов, представленных в ASCII-коде.

Специальные файлы – это файлы, ассоциированные с устройствами ввода-вывода, которые позволяют пользователю выполнять операции ввода-вывода, используя обычные команды записи в файл или чтения из файла.

Каталог – это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, составляющие один программный пакет), а с другой стороны – это файл, содержащий системную информацию о группе файлов, его составляющих. В каталоге содержится список файлов, входящих в него, и устанавливается соответствие между файлами и их характеристиками (атрибутами).

В разных файловых системах могут использоваться в качестве атрибутов файлов разные характеристики, такие, например, как информация о разрешенном доступе, пароль для доступа к файлу, владелец файла, создатель файла, признак «только для чтения», признак «скрытый файл», признак «системный файл», признак «архивный файл», признак «двоичный/символьный», признак «временный», признак блокировки, длина записи, указатель на ключевое поле в записи, длина ключа, время создания, время последнего доступа, время последнего изменения, текущий размер файла, максимальный размер файла.

Структурная организация каталогов может быть представлена в виде иерархического дерева или сети. Каталоги образуют дерево, если файлу разрешено входить только в один каталог, и сеть – если файл может входить сразу в несколько каталогов.

Логическая запись – это наименьший элемент данных, которым может оперировать программист при обмене с внешним устройством.

Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности, на диске. Файл состоит из физических записей – блоков. Блок – наименьшая единица данных, которой внешнее устройство обменивается с оперативной памятью. В некоторых ОС такая наименьшая единица обмена называется кластером. При этом кластер может состоять из нескольких блоков.

Способы физической организации файлов:

- Непрерывное размещение – файлу предоставляется последовательность блоков диска, образующих единый непрерывный участок дисковой памяти.

- размещение файлов в виде связанного списка блоков дисковой памяти. При таком способе в начале каждого блока содержится указатель на следующий блок.

- Использование связанного списка индексов. При этом с каждым блоком связывается некоторый элемент – индекс. Индексы располагаются в отдельной области диска. Если некоторый блок распределен некоторому файлу, то индекс этого блока содержит номер следующего блока данного файла

- перечисление номеров кластеров (блоков), занимаемых данным файлом. Этот перечень и служит адресом файла

Определить права доступа к файлу – значит определить для каждого пользователя набор операций, которые он может применить к данному файлу.

Различают два основных подхода к определению прав доступа:

1) избирательный доступ, когда для каждого файла и каждого пользователя сам владелец может определить допустимые операции;

2) мандатный доступ, когда система наделяет пользователя определенными правами по отношению к каждому разделяемому ресурсу (в данном случае файлу) в зависимости от того, к какой группе пользователь отнесен.

Функционирование любой файловой системы можно представить моделью, в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очередь, для выполнения своей работы использует интерфейс нижележащего уровня.

Задачей символьного уровня является определение по символьному имени файла его уникального имени.

На следующем, базовом, уровне по уникальному имени файла определяются его характеристики: права доступа, адрес, размер и другие.

Следующим этапом реализации запроса к файлу является проверка прав доступа к нему

На логическом уровне определяются координаты запрашиваемой логической записи в файле, то есть определяется, на каком расстоянии (в байтах) от начала файла находится требуемая логическая запись.

На физическом уровне файловая система определяет номер физического блока, который содержит требуемую логическую запись, и смещение логической записи в физическом блоке.

 

Каждый компонент уровня файловых систем выполнен в виде драйвера соответствующей файловой системы и поддерживает определенную организацию файловой системы. Драйвер файловой системы может быть написан в виде, позволяющем сразу нескольким приложениям выполнять операции с файлами.

Для выполнения своих функций драйверы файловых систем обращаются к подсистеме ввода-вывода, образующей следующий слой файловой системы новой архитектуры. Подсистема ввода-вывода – это составная часть файловой системы, которая отвечает за загрузку, инициализацию и управление всеми модулями низших уровней файловой системы.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.195.236 (0.054 с.)