Показатели оценки кислотно-щелочного равновесия 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Показатели оценки кислотно-щелочного равновесия



Основные показатели

Оценка КЩР и его сдвигов в клинической практике проводится с учётом нормального диапазона его основных показателей: pH, pCO2, стандартный бикарбонат плазмы крови SB (Standart Bicarbonate), буферные основания капиллярной крови BB (Buffer Base) и избыток оснований капиллярной крови BE (Base Excess). Учитывая, что [H+] крови адекватно отражает этот показатель в разных областях организма, а также простоту процедуры взятия крови для анализа, основные показатели КЩР исследуют именно в плазме крови.

Дополнительные показатели

С целью выяснения причины и механизма развития негазовых форм нарушений КЩР определяют ряд дополнительных показателей крови (КТ, МК) и мочи (титруемая кислотность — ТК и аммиак)

Таблица 1. Показатели кислотно-щелочного равновесия

Показатель Значения в СИ Традиционные единицы
Основные
pH крови:    
артериальной 7,37–7,45  
венозной 7,34–7,43  
капиллярной 7,35–7,45  
pCO2 4,3–6,0 кПа 33–46 мм рт.ст.
стандартный бикарбонат плазмы крови (SB) 22–26 ммоль/л  
Буферные основания капиллярной крови (BB) 44–53 ммоль/л  
Избыток оснований капиллярной крови (BE) –3,4 ‑ +2,5 ммоль/л  
Дополнительные
КТ крови   0,5–2,5 мг%
МК крови   6–16 мг%
ТК суточной мочи 20–40 ммоль/л  
Аммиак суточной мочи (NH4) 10–107 ммоль/сут (20–50 ммоль/л)  

Механизмы устранения сдвигов кислотно-щелочного равновесия организма

Учитывая важность поддержания [H+] в сравнительно узком диапазоне для оптимальной реализации процессов жизнедеятельности, в эволюции сформировались системные, хорошо интегрированные механизмы регуляции этого параметра в организме в норме и устранения его сдвигов при развитии патологии.

В норме в организме образуются почти в 20 раз больше кислых продуктов, чем основных (щелочных). В связи с этим в нем доминируют системы, обеспечивающие нейтрализацию, экскрецию и секрецию избытка соединений с кислыми свойствами. К этим системам относятся химические буферные системы и физиологические механизмы регуляции КЩР.

Химические буферные системы

Химические буферные системы представлены в основном бикарбонатным, фосфатным, белковым и гемоглобиновым буферами.

Буферные системы начинают действовать сразу же при увеличении или снижении [H+], и следовательно, представляют собой первую мобильную и действенную систему компенсации сдвигов рН. Например, буферы крови способны устранить умеренные сдвиги КЩР в течение 10–40 с. Ёмкость и эффективность буферных систем крови весьма высока.

Таблица 2. Относительная ёмкость буферов крови (%)

  Плазма крови Эритроциты
Гидрокарбонатный    
Гемоглобиновый    
Белковый    
Фосфатный    
Общая ёмкость    

Принцип действия химических буферных систем заключается в трансформации сильных кислот и сильных оснований в слабые. Эти реакции реализуются как внутри- так и внеклеточно (в крови, межклеточной, спинномозговой и других жидких средах), но в наибольшем масштабе — в клетках.

Гидрокарбонатная буферная система — основной буфер крови и межклеточной жидкости. Она составляет около половины буферной ёмкости крови и более 90% — плазмы и интерстициальной жидкости. Гидрокарбонатный буфер внеклеточной жидкости состоит из смеси угольной кислоты — H2NO3 и гидрокарбоната натрия — NaHCO3. В клетках в состав соли угольной кислоты входят калий и магний.

Гидрокарбонатный буфер — система открытого типа, она ассоциирована с функцией внешнего дыхания и почек. Система внешнего дыхания поддерживает оптимальный уровень рCO2 крови (и как следствие — концентрацию H2CO3), а почки — содержание аниона HCO3. Именно это обеспечивает функционирование системы HCO3/H2CO3 в качестве эффективного и ёмкого буфера внеклеточной среды даже в условиях образования большого количества нелетучих кислот (табл. 3).

Таблица 3. Начальные сдвиги и компенсаторные реакции при нарушениях КЩР

Нарушение КЩР Начальный сдвиг КЩР Реакция компенсации
Дыхательный ацидоз ¯ pH, ­ pCO2 ­ HCO3
Дыхательный алкалоз ­ pH, ¯ pCO2 ¯ HCO3
Негазовый ацидоз ¯ pH ¯ HCO3 ¯ pCO2
Негазовый алкалоз ­ pH ­ HCO3- ­ pCO2

Гидрокарбонатная буферная система используется как важный диагностический показатель состояния КЩР организма в целом.

Фосфатная буферная система играет существенную роль в регуляции КЩР внутри клеток, особенно — канальцев почек. Это обусловлено более высокой концентрацией фосфатов в клетках в сравнении с внеклеточной жидкостью (около 8% общей буферной ёмкости). Фосфатный буфер состоит из двух компонентов: щелочного — (Na2HPO4) и кислого — (NaH2PO4).

Эпителий канальцев почек содержит компоненты буфера в максимальной концентрации, что обеспечивает его высокую мощность. В крови фосфатный буфер способствует поддержанию («регенерации») гидрокарбонатной буферной системы. При увеличении уровня кислот в плазме крови (содержащей и гидрокарбонатный, и фосфатный буфер) увеличивается концентрация H2CO3 и уменьшается содержание NaHCO3:

 

H2CO3 + Na2HPO4 Û NaHCO3 + NaH2PO4\

 

В результате избыток угольной кислоты устраняется, а уровень NaHCO3 возрастает.

Белковая буферная система — главный внутриклеточный буфер. Он составляет примерно три четверти буферной ёмкости внутриклеточной жидкости.

Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок‑COOH) и соли сильного основания (белок‑COONa). При нарастании уровня кислот они взаимодействуют с солью белка с образованием нейтральной соли и слабой кислоты. При увеличении концентрации оснований реакция их происходит с белком с кислыми свойствами. В результате вместо сильного основания образуется слабоосновная соль.

Гемоглобиновая буферная система — наиболее ёмкий буфер крови — составляет более половины всей её буферной ёмкости. Гемоглобиновый буфер состоит из кислого компонента — оксигенированного Hb — HbO2 и основного — неоксигенированного. HbO2 примерно в 80 раз сильнее диссоциирует с отдачей в среду H+, чем Hb. Соответственно, он больше связывает катионов, главным образом K+.

Основная роль гемоглобиновой буферной системы заключается в её участии в транспорте CO2 от тканей к лёгким.

• В капиллярах большого круга кровообращения HbO2 отдаёт кислород. В эритроцитах CO2 взаимодействует с H2O и образуется H2CO3. Эта кислота диссоциирует на HCO3 и H+, который соединяется с Hb. Анионы HCO3из эритроцитов выходят в плазму крови, а в эритроциты поступает эквивалентное количество анионов Cl. Остающиеся в плазме крови ионы Na+ взаимодействуют с HCO3 и благодаря этому восстанавливают её щелочной резерв.

• В капиллярах лёгких, в условиях низкого pСО2 и высокого pО2, Hb присоединяет кислород с образованием HbO2. Карбаминовая связь разрывается, в связи с чем высвобождается CO2. При этом, HCO3 из плазмы крови поступает в эритроциты (в обмен на ионы Cl) и взаимодействует с H+, отщепившимся от Hb в момент его оксигенации. Образующаяся H2CO3 под влиянием карбоангидразы расщепляется на CO2 и H2O. CO2 диффундирует в альвеолы и выводится из организма.

Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При остром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности, шоке, коме и других состояниях) кости могут обеспечивать до 30–40% буферной ёмкости. Высвобождение карбоната кальция в плазму крови способствует эффективной нейтрализации избытка H+. В условиях хронической нагрузки кислыми соединениями (например, при хронической сердечной, печёночной, почечной, дыхательной недостаточности) кости могут обеспечивать до 50% буферной ёмкости биологических жидкостей организма.

ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ

Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КЩР. Для их реализации и достижения необходимого эффекта требуется больше времени — от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КЩР относят процессы, протекающие в лёгких, почках, печени и ЖКТ.

Лёгкие: Лёгкие обеспечивают устранение или уменьшение сдвигов КЩР путём изменения объёма альвеолярной вентиляции. Это достаточно мобильный механизм — уже через 1–2 мин после изменения объёма альвеолярной вентиляции компенсируются или устраняются сдвиги КЩР.

• Причиной изменения объёма дыхания является прямое или рефлекторное изменение возбудимости нейронов дыхательного центра.

• Снижение рН в жидкостях организма (плазма крови, СМЖ) является специфическим рефлекторным стимулом увеличения частоты и глубины дыхательных движений. Вследствие этого лёгкие выделяют избыток CO2 (образующийся при диссоциации угольной кислоты). В результате содержание H+ (HCO3 + H+ = H2CO3 ® H2O + CO2) в плазме крови и других жидкостях организма снижается.

• Повышение рН в жидких средах организма снижает возбудимость инспираторных нейронов дыхательного центра. Это приводит к уменьшению альвеолярной вентиляции и выведению из организма CO2, т.е. к гиперкапнии. В связи с этим в жидких средах организма возрастает уровень угольной кислоты, диссоциирующей с образованием H+, — показатель рН снижается.

Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции лёгких в два раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3‑0,4.

Почки: К главным механизмам уменьшения или устранения сдвигов КЩР крови, реализуемых нефронами почек, относят ацидогенез, аммониогенез, секрецию фосфатов и K+,Na+‑обменный механизм.

Ацидогенез. Этот энергозависимый процесс, протекающий в эпителии дистальных отделов нефрона и собирательных трубочек, обеспечивает секрецию в просвет канальцев H+ в обмен на реабсорбируемый Na+ (рис. 1).

 

Рис. 1. Реабсорбция HCO3‑ в клетках проксимального отдела. КА — карбоангидраза.

Рис. 2. Секреция H+ клетками канальцев и собирательных трубочек.

КА — карбоангидраза.

 

Количество секретируемого H+ эквивалентно его количеству, попадающему в кровь с нелетучими кислотами и H2CO3. Реабсорбированный из просвета канальцев в плазму крови Na+ участвует в регенерации плазменной гидрокарбонатной буферной системы (рис. 13–2).

Аммониогенез, как и ацидогенез, реализует эпителий канальцев нефрона и собирательных трубочек. Аммониогенез осуществляется путём окислительного дезаминирования аминокислот, преимущественно (примерно 2/3) — aeooaieiовой, в меньшей мере — аланина, аспарагина, лейцина, гистидина. Образующийся при этом аммиак диффундирует в просвет канальцев. Там NH3+ присоединяет ион H+ с образованием иона аммония (NH4+). Ионы NH4+ замещают Na+ в солях и выделяются преимущественно в виде NH4Cl и (NH4)2SO4. В кровь при этом поступает эквивалентное количество гидрокарбоната натрия, обеспечивающего регенерацию гидрокарбонатной буферной системы.

• Секреция фосфатов осуществляется эпителием дистальных канальцев при участии фосфатной буферной системы:

 

Na2HPO4 + H2CO3 Û NaH2PO4 + NaHCO3

 

Образующийся гидрокарбонат натрия реабсорбируется в кровь и поддерживает гидрокарбонатный буфер, а NaH2PO4 выводится из организма с мочой.

Таким образом, секреция H+ эпителием канальцев при реализации трёх описанных выше механизмов (ацидогенеза, аммониогенеза, секреции фосфатов) сопряжена с образованием гидрокарбоната и поступлением его в плазму крови. Это обеспечивает постоянное поддержание одной из наиболее важных, ёмких и мобильных буферных систем — гидрокарбонатной и как следствие — эффективное устранение или уменьшение опасных для организма сдвигов КЩР.

К+,Na+‑обменный механизм, реализуемый в дистальных отделах нефрона и начальных участках собирательных трубочек, обеспечивает обмен Na+ первичной мочи на K+, выводящийся в неё эпителиальными клетками. Реабсорбированный Na+ в жидких средах организма участвует в регенерации гидрокарбонатной буферной системы. K+,Na+‑обмен контролируется альдостероном. Кроме того, альдостерон регулирует (увеличивает) объём секреции и экскреции H+.

Таким образом, почечные механизмы устранения или уменьшения сдвигов КЩР осуществляются путём экскреции H+ и восстановления резерва гидрокарбонатной буферной системы в жидких средах организма.

Печень: Печень играет существенную роль в компенсации сдвигов КЩР. В ней действуют, с одной стороны, общие внутри‑ и внеклеточные буферные системы (гидрокарбонатная, белковая и др.), с другой стороны, в гепатоцитах осуществляются различные реакции метаболизма, имеющие прямое отношение к устранению расстройств КЩР.

• Синтез белков крови, входящих в белковую буферную систему. В печени образуются все альбумины, а также фибриноген, протромбин, проконвертин, проакцелерин, гепарин, ряд глобулинов и ферментов.

• Образование аммиака, способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.

• Синтез глюкозы из неуглеводных веществ — аминокислот, глицерина, лактата, пирувата. Включение этих органических нелетучих кислот при образовании глюкозы обеспечивает снижение их содержания в клетках и биологических жидкостях. Так, МК, которую многие органы и ткани не способны метаболизировать, в гепатоцитах примерно на 80% трансформируется в H2O и CO2, а оставшееся количество ресинтезируется в глюкозу. Таким образом, лактат превращается в нейтральные продукты.

• Выведение из организма нелетучих кислот — глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.

• Экскреция в кишечник кислых и основных веществ с жёлчью.

Желудок и кишечник: Желудок участвует в демпфировании сдвигов КЩР, главным образом, путём изменения секреции соляной кислоты: при защелачивании жидких сред организма этот процесс тормозится, а при закислении — усиливается. Кишечник способствует уменьшению или устранению сдвигов КЩР посредством:

• Секреции кишечного сока, содержащего большое количество гидрокарбоната. При этом в плазму крови поступает H+.

• Изменения количества всасываемой жидкости. Это способствует нормализации водного и электролитного баланса в клетках, во внеклеточной и других биологических жидкостях и как следствие — — нормализации рН.

• Реабсорбции компонентов буферных систем (Na+, K+, Ca2+, Cl, HCO3).

Поджелудочная железа способствует компенсации сдвигов КЩР при помощи гидрокарбоната. Его секреция увеличивается при алкалозах и уменьшается в условиях ацидоза.



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 898; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.20.193 (0.008 с.)