Непозиционные системы счисления. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Непозиционные системы счисления.



Непозиционные системы счисления.

ü Единичная система счисления, так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Единичной системой счисления пользуются малыши, показывая на пальцах свой возраст или используя для этого счетные палочки.

Примером непозиционной системы - римская система счисления. В основе нее лежат знаки I, V, X, а для обозначения чисел 100, 500 и 1000 используются латинские буквы С, D и М.

В римской системе счисления количественное значение цифры не зависит от ее положения в числе. Чтобы записать число в римской системе счисления, необходимо разложить его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц.

2. Позиционные системы счисления.

Каждая позиционная система счисления имеет определенный алфавит цифр и основание. Основание системы равно количеству цифр (знаков) в ее алфавите.

В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе. Позиция цифры в числе называется разрядом.

Число в позиционной системе счисления записывается в виде суммы числового ряда степеней основания, в качестве коэффициентов которых выступают цифры данного числа.

Виды позиционных систем счисления:

ü Двоичная система счисления.

 
 

ü Десятичная система счисления.

Для записи десятичных дробей используются разряды с отрицательными значениями степеней основания. Например, число 555,55 в развернутой форме будет записываться следующим образом:

555,5510 = 5 × 102 + 5 × 101 + 5 × 100 + 5 × 10-1 + 5 × 10-2.

ü Восьмеричная система счисления.

Основание равно 8 и алфавит состоит из восьми цифр {0, 1, 2, 3, 4, 5, 6, 7}.

ü Шестнадцатеричная система счисления.

Основание равно 16 и алфавит состоит из шестнадцати цифр {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F}, причем первые десять цифр имеют общепринятое обозначение, а для записи остальных цифр {10, 11, 12, 13, 14, 15} используются первые шесть букв латинского алфавита.

 

Каковы элементы алгебры логики?

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Как же использовать полученные нами знания из области математической логики для конструирования электронных устройств? Нам известно, что 0 и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы, состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные), стали называть логическими элементами.

Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от 2 до 8 входов и 1 или 2 выхода.

Чтобы представить два логических состояния — “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий — значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

В чем состоят логические основы построения ЭВМ?

В основе обработки компьютером информации лежит алгебра логики, разработанная Дж. Булем. Было доказано, что все электронные схемы ЭВМ могут быть реализованы с помощью логических элементов И, ИЛИ, НЕ.

Элемент ИЛИ

 

 

А В С
     
     
     
     

Функция “ИЛИ” - логическое сложение (дизъюнкция), ее результат равен 1, если хотя бы 1 из аргументов равен 1.

Здесь транзисторы включены параллельно друг другу. Если оба закрыты, то их общее сопротивление велико и на выходе будет сигнал низкого уровня (логический “0”). Достаточно подать сигнал высокого уровня (“1”) на один из транзисторов, как схема начнет пропускать ток, и на сопротивлении нагрузки установится также сигнал высокого уровня (логическая “1”).

Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

Схема И.

Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 1. Таблица истинности — в таблице 1.

Рис. 1 Таблица 1
X Y X*Y
     
     
     
     

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x*y (читается как " x и y").

Операция конъюнкции на функциональных схемах обозначается знаком “&” (читается как "амперсэнд"), являющимся сокращенной записью английского слова and.

 

Схема ИЛИ

Схема ИЛИ реализует дизъюнкцию двух или более логических значений.

Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Условное обозначение схемы ИЛИ представлено на рис. 2. Знак “1” на схеме — от устаревшего обозначения дизъюнкции как ">=1" (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x v y (читается как " x или y "). Таблица истинности — в табл. 2.

Рис. 2  
X Y X v Y
     
     
     
     
    Таблица 2

Схема НЕ

Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом z можно записать соотношением z = x, где x читается как "не x" или "инверсия х".

Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение инвертора — на рисунке 3, а таблица истинности — в табл. 3.

Рис. 3 Таблица 3
x x
   
   

Схема И-НЕ

Схема И-НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И.

Связь между выходом z и входами x и y схемы записывают следующим образом: , где читается как "инверсия x и y".

Условное обозначение схемы И-НЕ представлено на рисунке 4. Таблица истинности схемы И-НЕ — в табл. 4.

Рис. 4 Таблица 4
x y
     
     
     
     

Схема ИЛИ-НЕ

Схема ИЛИ-НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ.

Связь между выходом z и входами x и y схемы записывают следующим образом: , где , читается как "инверсия x или y". Условное обозначение схемы ИЛИ-НЕ представлено на рис. 5.

Таблица истинности схемы ИЛИ-НЕ — в табл. 5.

Рис. 5.

Таблица 5.

x y (x v y)
     
     
     
     
Другие логические элементы построены из этих трех простейших и выполняют более сложные логические преобразования информации. Сигнал, выработанный одним логическим элементом, можно подавать на вход другого элемента, это дает возможность образовывать цепочки из отдельных логических элементов. Например, эта схема соответствует сложной логической функции F(A,B)= (А V В). Попробуйте проследить изменения электрического сигнала в этой схеме. Например, какое значение электрического сигнала (O или 1) будет на выходе, если на входе: А=1 и В=О.

Такие цепи из логических элементов называются ЛОГИЧЕСКИМИ УСТРОЙСТВАМИ. Логические устройства же, соединяясь, в свою очередь образуют функциональные схемы (их еще называют СТРУКТУРНЫМИ или ЛОГИЧЕСКИМИ СХЕМАМИ). По заданной функциональной схеме можно определить логическую формулу, по которой эта схема работает, и наоборот.

13. Какие логические операции выполняются в ЭВМ?

Для логических величин обычно используются три операции:

1. Конъюнкция – логическое умножение (И) – and, &, ∧.

2. Дизъюнкция – логическое сложение (ИЛИ) – or, |, v.

3. Логическое отрицание (НЕ) – not,.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

1. Законы рефлексивности
a ∨ a = a
a ∧ a = a

2. Законы коммутативности
a ∨ b = b ∨ a
a ∧ b = b ∧ a

3. Законы ассоциативности
(a ∧ b) ∧ c = a ∧ (b ∧ c)
(a ∨ b) ∨ c = a ∨ (b ∨ c)

4. Законы дистрибутивности
a ∧ (b ∨ c) = a ∧ b ∨ a ∧ c
a ∨ b ∧ c = (a ∨ b) ∧ (a ∨ c)

5. Закон отрицания отрицания
(a) = a

6. Законы де Моргана
(a ∧ b) = a ∨ b
(a ∨ b) = a ∧ b

7. Законы поглощения
a ∨ a ∧ b = a
a ∧ (a ∨ b) = a

 

14. Какие принципы используются при построении ЭВМ?

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

1. Любую ЭВМ образуют 3 основных компонента: процессор, память и устройства ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ делится на два типа:

ü набор команд по обработке (программы);

ü данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты.

Программное управление работой периферийного устройства производится через программу - драйвер, которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

Наружные разъёмы материнской платы: PS/2 (1 - мышь, 2 - клавиатура), 3 - сетевой RJ-45, 4 - USB, 5 - 9-контактный разъём COM-порта (D-subminiature), 6 - 25-контактный разъём LPT порта, 7 - VGA порт, 8 - MIDI) и 9 - 3.5 мм аудио входы-выходы

 

15. Функциональная структура ЭВМ тип PC.

Образование

В образовании мультимедиа используется для создания компьютерных учебных курсов (популярное название CBTS) и справочников, таких как энциклопедии и сборники. CBT позволяет пользователю пройти через серию презентаций, тематического текста и связанных с ним иллюстраций в различных форматах представления информации. Edutainment – неофициальный термин, используемый, чтобы объединить образование и развлечение, особенно мультимедийные развлечения. Возможности для обучения и воспитания почти бесконечны.

Техника

Разработчики программного обеспечения могут использовать мультимедиа в компьютерных симуляторах чего угодно: от развлечения до обучения, например: военного или производственного обучения. Мультимедиа для программных интерфейсов часто создаётся как коллаборация между креативными профессионалами и разработчиками программного обеспечения.

Промышленность

В промышленном секторе мультимедиа используют как способ презентации информации для акционеров, руководства и коллег. Мультимедиа также полезно в организации обучения персонала, рекламы и продаж продукта по всему миру посредством фактически неограниченных веб-технологий.

Медицина

Врачи также могут получить подготовку с помощью виртуальных операций или симуляторов человеческого тела, поражённого болезнью, распространённой вирусами и бактериями, таким образом пытаясь разработать методики её предотвращения.

 

26. В чем состоят принципы работы сканера?

 

Сканер — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт его цифровую копию. Процесс получения этой копии называется сканированием.

Ска́нер — устройство или программа, осуществляющие сканирование, т.е. исследование объекта, наблюдение за ним или считывание его параметров.

Виды сканеров:

ü Сканер изображений — устройство для считывания двумерного (плоского) изображения и представления его в растровойэлектронной форме. После этого возможна программная обработка полученных данных с целью распознавания сканированного текста или векторизации графики.

ü 3D-сканер — устройство для считывания формы объёмного объекта.

ü Биометрические сканеры используются для целей идентификации личности; например:

§ Сканер сетчатки глаза считывает рисунок сетчатки глаза;

§ Сканер отпечатка пальца считывает папиллярный рисунок подушечки пальца руки.

ü Устройства автоматизированного считывания служебной информации:

§ Сканер штрихкода — устройство для считывания информации, представленной в виде штрих-кода.

§ Считыватель RFID-меток

ü Сканер портов — программный инструмент в области сетевых технологий.

ü В программировании сканером часто называют часть компилятора, осуществляющую лексический анализ.

Основные характеристики:

1. Скорость сканирования — параметр, отражающий время, за которое будет отсканирован тот или иной документ.

2. Рабочая область сканера — максимальный формат документа, который сканер в состоянии обработать.

3. Аппаратный интерфейс сканера (интерфейс передачи данных) обеспечивает обмен информацией между сканером и компьютером. От него зависит скорость передачи данных между компьютером и сканером.

4. Разрешение - это совокупность параметров, характеризующих минимальный размер деталей изображения, который сканер в состоянии считать.

5. Цветность сканера. Сканеры делятся на цветные, черно-белые (полутоновые) и штриховые черно-белые.

6. Разрядность (глубина цвета) - параметр, характеризую­щий количество цветов или оттенков серого (в зависимос­ти от цветности сканера). Разрядность означает, сколько бит используется сканером для представления цвета одной точки изображения.

 

На рис. 2.11 изображена общая схема устройства сканера. Свет, идущий от источника освещения, попадает на оригинал в определенной точке. Отразившись от него, свет попадает на оптическую систему сканера. Она состоит из зеркал и объектива (иногда роль оптической системы может играть просто призма). Оптическая система фокусирует свет на фотопринимающем элементе, роль которого — преобразо­вание интенсивности падающего света в электронный вид.

Принцип работы сканера состоит в следующем: в результате преобразования света получается электрический сигнал, содержащий информацию об активности цвета в исходной точке сканируемого изображения. После оцифровки аналогового сигнала в АЦП цифровой сигнал через аппаратный интерфейс сканера идет в компьютер, где его получает и анализирует программа для работы со сканером. После окончания одного такого цикла (освещение оригинала — получение сигнала — преобразование сигнала — получение его программой) источник света и приемник светового отражения перемещается относительно оригинала.

Аналого-цифровой преобразователь (АЦП) - устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал).


 

27. Какие принципы работы используются в принтерах?

Принтер – периферийное устройство компьютера, предназначенное для перевода текста или графики на физический носитель из электронного вида.

Основные характеристики принтера:

1. Формат бумаги

2. Разрешение печати (сколько точек на 1 дюйм)

3. Скорость печати

 

Матричный принтер

 

Матричные принтеры — старейшие из ныне применяемых типов принтеров, их механизм был изобретён в 1964 году японской корпорацией Seiko Epson.

Изображение формируется печатающей головкой, которая состоит из набора иголок (игольчатая матрица), приводимых в действие электромагнитами. Головка передвигается построчно вдоль листа, при этом иголки ударяют по бумаге через красящую ленту, формируя точечное изображение.

Основными недостатками матричных принтеров

1. монохромность (хотя существовали и цветные матричные принтеры, по очень высокой цене)

2. очень низкая скорость работы

3. высокий уровень шума

Достоинства:

1. Надежность

2. Точность

Выпускаются также высокоскоростные линейно-матричные принтеры, в которых большое количество иголок равномерно расположены на челночном механизме (фрете) по всей ширине листа.

Матричные принтеры, несмотря на полное вытеснение их из бытовой и офисной сферы, до сих пор достаточно широко используются в некоторых областях (банковское дело — печать документов под копирку, и др.).

 

Струйный принтер

 

Принцип действия струйных принтеров похож на матричные принтеры тем, что изображение на носителе формируется из точек. Но вместо головок с иголками в струйных принтерах используется матрица дюз (головка), печатающая жидкими красителями. Печатающая головка может быть встроена в картриджи с красителями (в основном такой подход используется на офисных принтерах компаниями Hewlett-Packard, Lexmark). В других моделях офисных принтеров используются сменные картриджи, печатающая головка, при замене картриджа не демонтируется. На большинстве принтеров промышленного назначения чернила подаются в головы, закреплённые в каретке, через систему автоматической подачи чернил.

Типов подачи красителя:

1. Непрерывная подача.

2. Подача по требованию — подача красителя из сопла печатающей головки происходит только тогда, когда краситель действительно надо нанести на соответствующую соплу область запечатываемой поверхности. Именно этот способ подачи красителя и получил самое широкое распространение в современных струйных принтерах.

 

Лазерный принтер

 

Важнейшим элементом лазерного принтера является вращающийся фотобарабан, с помощью которого производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). По поверхности барабана равномерно распределяется статический заряд. С помощью тонкой проволоки или сетки, называемой коронирующим проводом, на этот провод подается высокое напряжение, вызывающее возникновение вокруг него светящейся ионизированной области, называемой короной.

Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Этот луч, попадая на фотобарабан, засвечивает на нем элементарные площадки (точки), и в результате фотоэлектрического эффекта в этих точках изменяется электрический заряд.

Таким образом, на фотобарабане возникает копия изображения в виде потенциального рельефа.

На следующем рабочем шаге с помощью другого барабана, называемого девелопером (developer), на фотобарабан наносится тонер - мельчайшая красящая пыль. Под действием статического заряда мелкие частицы тонера легко притягиваются к поверхности барабана в точках подвергшихся экспозиции, и формируют на нем изображение.

Лист бумаги из подающего лотка помощью системы валиков перемещается к барабану. Затем листу сообщается статический заряд, противоположный по знаку заряду засвеченных точек на барабане. При соприкосновении бумаги с барабаном частички тонера с барабана переносятся (притягиваются) на бумагу.

Для фиксации тонера на бумаге листу вновь сообщается заряд и он пропускается между двумя роликами нагревающими его до температуры около 180' - 200'С. После собственно процесса печати барабан полностью разряжается, очищается от прилипших частиц тонера и готов для нового цикла печати. Описанная последовательность действий происходит очень быстро и обеспечивает высокое качество печати.

 

Свойства алгоритмов

1) Конечность

1. Алгоритм состоит из отдельных элементарных шагов или действий (причем множество различных шагов – конечно).

2. Алгоритм должен заканчиваться за конечное число шагов (в бесконечных алгоритмах выводится знак приближения, который является решением алгоритма - шаг приближения).

2) Элементарность

Каждый шаг алгоритма должен быть простым, чтобы устройство, выполняющее операции, могло выполнить их отдельным действием.

3) Дискретность

Процесс решения задачи представляется конечной последовательностью отдельных шагов и каждый шаг алгоритма выполняется за конечное время (не обязательно за единицу времени).

4) Детерминированность(однозначность)

Каждый шаг алгоритма должен быть однозначно и не двусмысленно определён и не должен допускать произвольной трактовки.

В алгоритме каждый шаг пронумерован, и выполняется строгая последовательность. При окончании нумерации завершается решение алгоритма.

5) Результативность

Алгоритм имеет некоторое число входных величин аргумента.

Цель выполнения алгоритма состоит в получении конкретного результата, имеющего вполне определённое отношение к исходным данным.

Алгоритм останавливается после конечного числа шагов, зависящего от данных, с указанием того, что считать результатом. Если решение не может быть найдено, то должно быть указано, что в этом случае считать результатом.

6) Массовость

Алгоритм решения задачи разрабатывается в общем виде. Он должен быть применим для некоторого класса задач, различающиеся лишь с исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

7) Эффективность

Одну и ту же задачу можно решить по-разному и соответственно за различное время с различными затратами средств.

Средствами для программирования являются:

§ Вычислительная мощность

§ Память

§ Время

Внутренняя память

Внутренняя память компьютера предназначена для оперативной обработки данных. Она является более быстрой, чем внешняя память, что соответствует принципу иерархии памяти, выдвинутому в проекте Принстонской машины. Следуя этому принципу, можно выделить уровни иерархии и во внутренней памяти.

Выделяют следующие виды внутренней памяти:

  1. оперативная. В нее помещаются программы для выполнения и данные для работы программы, которые используются микропроцессором. Она обладает большим быстродействием и является энергозависимой. Обозначается RAM - Random Access Memory -память с произвольным доступом;
  1. кэш-память. Она служит буфером между RAM и микропроцессором и позволяет увеличить скорость выполнения операций, т.к. является сверхбыстродействующей. В нее помещаются данные, которые процессор получил и будет использовать в ближайшие такты своей работы. Эта память хранит копии наиболее часто используемых участков RAM. При обращении микропроцессора к памяти сначала ищутся данные в кэш-памяти, а затем, если остается необходимость, в оперативной памяти;
  1. постоянная память - BIOS (Basic Input-Output System). В нее данные занесены при изготовлении компьютера. Обозначается ROM - Read Only Memory. Хранит:
  • программы для проверки оборудования при загрузке операционной системы;
  • программы начала загрузки операционной системы;
  • программы по выполнению базовых функций по обслуживанию устройств компьютера;
  • программу настройки конфигурации компьютера - Setup. Позволяет установить характеристики: типы видеоконтроллера, жестких дисков и дисководов для дискет, режимы работы с RAM, запрос пароля при загрузке и т.д;
  1. полупостоянная память - CMOS (Complementary Metal-Oxide Semiconductor). Хранит параметры конфигурации компьютера. Обладает низким энергопотреблением, потому не изменяется при выключении компьютера, т.к. питается от аккумулятора;
  1. видеопамять. Используется для хранения видеоизображения, выводимого на экран. Входит в состав видеоконтроллера.

 

Внешняя память ПК.

Процессор  
КЭШ
ОЗУ
ВЗУ
Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

 

h ALaDOJL+AAAA4QEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAU AAYACAAAACEAOP0h/9YAAACUAQAACwAAAAAAAAAAAAAAAAAvAQAAX3JlbHMvLnJlbHNQSwECLQAU AAYACAAAACEAkggGhOQBAADmAwAADgAAAAAAAAAAAAAAAAAuAgAAZHJzL2Uyb0RvYy54bWxQSwEC LQAUAAYACAAAACEA3cAU4N4AAAAJAQAADwAAAAAAAAAAAAAAAAA+BAAAZHJzL2Rvd25yZXYueG1s UEsFBgAAAAAEAAQA8wAAAEkFAAAAAA== " strokecolor="#4579b8 [3044]"/>


В состав внешней памяти компьютера входят:

· накопители на жёстких магнитных дисках;

В отличие от оперативной памяти, данные, хранящиеся на жестком диске, не теряются при выключении компьютера

· накопители на гибких магнитных дисках (или дискета) — носитель небольшого объема информации, используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.

· накопители на компакт-дисках (CD-ROM / DVD-ROM);

Диски могут записывать инф-ю любого типа - музыку, изображение или текст.

· накопители на магнитной ленте (стримеры);

Стример — устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1- 2 Гбайта и больше.

· накопители на магнитно-оптических дисках: СD-MO можно многократно использовать для записи. Ёмкость от 128 Мбайт до 2,6 Гбайт.

Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

 

Игровые устройства ввода

§ Джойстик

§ Педаль

§ Руль

§ Рычаг для симуляторов полёта (штурвал, Ручка управления самолётом)

 

Клавиатура – устройство ручного ввода информации в ЭВМ. Стандартная компьютерная клавиатура, также называемая клавиатурой PC/AT или AT-клавиатурой, имеет 101 или 102 клавиши (стандарт – 104).

Клавиатура: 1) сборная 2) целиковая;

Способы подключения: 1) вставляется в PS/2 2) USB

Мышь – устройство ввода.

Мышь: 1. Механическая 2. Оптическая 3. Лазерная

Способы подключения: 1. PS/2 2. USB

Скрол – колёсико мыши. Touch POD - обратная мышь.

Клавиша мыши: 1) основная 2) вспомогательная

Сканер – это устройство ввода в ЭВМ графической информации непосредственно с бумажного документа. Разрешающая способность сканеров составляет от 75 до 1600 точек на дюйм.

 

43. Устройства вывода информации из ПК

Устройства вывода - это устройства, которые переводят информацию с машинного языка в формы, доступные для человеческого восприятия.

К устройствам вывода относятся:

1. Монитор (дисплей) - универсальное устройство визуального отображения всех видов информации. Различают алфавитно-цифровые и графические мониторы, а также монохромные мониторы и мониторы цветного изображения - активно-матричные и пассивно-матричные жкм. Существуют:

1) мониторы на базе электронно-лучевой трубки (CRT).

2) жидкокристаллические мониторы (LCD) на базе жидких кристаллов. Жидкие кристаллы – особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под воздействием электрического напряжения.

2. Принтер – устройство для вывода информации в виде печатных копий текста или графики. Существуют:

ü Лазерный принтер – печать формируется за счет эффектов ксерографии.

ü Струйный принтер – печать формируется за счет микро капель специальных чернил.

ü Матричный принтер – формирует знаки несколькими иголками, расположенными в головке принтера. Бумага втягивается с помощью вала, а между бумагой и головкой принтера располагается красящая лента.

3. Акустические колонки и наушники – устройство для вывода звуковой информации.

44. Видеосистема ПК



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 1004; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.86.173 (0.2 с.)