Потенциал- величина равная работе поля По перемещению единичного заряда из данной точки в бесконечность. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потенциал- величина равная работе поля По перемещению единичного заряда из данной точки в бесконечность.



Напряжённость — векторная величина определяющая силу действующую на заряженную частицу или тело со стороны электрического поля и численно равная отношению силы к заряду частицы.

Е = F/Q [Н/Кл] или [B/M]

Напряжение- отношение работы электрического поля при переносе пробного заряда из точки A в B к величине этого пробного заряда.

 

2. Пускорегулирующий аппарат (ПРА) — эго светотех­ническое изделие, с помощью которого осуществляется питание источника света от электрической сети, обес­печивающее необходимые пусковые и рабочие режимы ИС, конструктивно оформленное в виде единого аппа­рата, либо нескольких отдельных блоков.

Для чего предназначены магнитные пускатели. Магнитные пускатели предназначены для дистанционного управления асинхронными двигателями с короткозамкнутым ротором напряжением 500 В с рабочими токами, не превышающими номинальный рабочий ток главных контактов пускателя.

Пускатели со встроенными тепловыми реле также защищают электродвигатели от перегрузок недопустимой продолжительности.

Магнитные пускатели состоят из контакторов, тепловых реле и оболочек.

Принципиальная схема магнитного нереверсивного пускателя переменного тока:
1 — катушка; 2 и 4 — контакты; 3 — блок контакта; 5 — реле

Главной частью всех пускателей является трехполюсный электромагнитный контактор, все контакты которого мостикового типа с контактными накладками серебросодержащего материала. Пускатели серии ПМЕ-200 могут быть реверсивными и нереверсивными. Реверсивные пускатели имеют два контактора с электрическим соединением, обеспечивающим электрическую блокировку через разомкнутые контакты обоих контакторов, что исключает возможность включения одного контактора при включенном другом.

Как включается магнитный пускатель?

Магнитный пускатель включается следующим образом: при нажатии на кнопку «Пуск* кнопочного поста электрический ток поступает в катушку электромагнита (магнитной системы), благодаря чему появляется магнитное поле, которое притягивает якорь электромагнита к сердечнику. А так как подвижные контакты соединены с якорем электромагнита, otiri’ тоже поднимутся и соединятся с неподвижными контактами. Одновременно замкнутся и блок-контакты. При отпуске кнопки «Пуск» ток в катушку электромагнита будет поступать не через кнопку «Пуск», а через блок-контакты и кнопку «Стоп», так как эта кнопка всегда замкнута, а кнопка «Пуск» бывает замкнута только в момент нажатия на нее.

Если нужно остановить электродвигатель, следует нажать на кнопку «Стоп». В этом случае цепь питания катушки электромагнита разомкнётся й ток в катушку не будет поступать, вследствие чего исчезнет магнитное поле, а якорь под действием своего веса отойдет от сердечника; при этом он потянет за собой и подвижные главные контакты, в результате чего контакты разомкнутся и подача тока в электродвигатель прекратится.

3.Последовательное соединение резисторов Rобщ = R1 + R2 + R3+...+ Rn.; ; ;

Параллельное соединение ; ; 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn Rобщ= R1*R2/R1+R;

Смешанное соединение

 

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:
1. Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
2. Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
3. После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
4. Рассчитывают сопротивления полученной схемы.

4. Потери мощности в трансформаторе и определение их опытным путем.

Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.

Переход электромагнитной энергии через трансформатор сопровождается потерей энергии в нем: часть энергии расходуется на нагрев магнитопровода (вследствие потерь на гистерезис и потерь от вихревых токов), на нагрев меди обмоток, а также на создание магнитного потока, рассеивающегося в окружающую среду, которым пренебрежем.

Поэтому мощность Р2, отдаваемая во внешнюю цепь вторичной обмотки, меньше мощности Р1, подведенной к первичной обмотке трансформатора, на величину потерь в меди обмоток Рэл (так называемые электрические потери) и потерь в стали сердечника Рм (так называемые магнитные потери). В соответствии с этими рассуждениями величину магнитных потерь можно с достаточной степенью точности определить по результатам опыта холостого хода, приняв мощность, потребляемую трансформатором при холостом ходе, равной величине потерь в стали. Это допустимо, так как при постоянстве напряжения питающей сети U1 и частоты f магнитный поток Ф практически не зависит от нагрузки.

Коэффициент полезного действия. Коэффициентом полез­ного действия трансформатора называют отношение отда­ваемой мощности Р 2к мощности Р 1:

где Δ Р —суммарные потери в трансформаторе.

Наиболее распространенным является нагрев трансформаторов методом постоянного тока. Нагрев по данному методу происходит за счет теплоты, выделяющейся в обмотках трансформатора при пропускании по ним постоянного тока. Источник постоянного тока подсоединяют к выводам соединенных соответствующим образом обмоток. Схему нагрева и необходимый для этого источник постоянного тока выбирают на основании расчета. Для расчета необходимо иметь активные сопротивления и номинальные значения токов обмоток, включенных в схему нагрева, и схему соединения обмоток в трансформаторе.

Мощность нагрева, Вт, определяют по формуле:

Рнаг=I2схRсх

Естественное воздушное охлаждение. Все нагреваемые части трансформатора непосредственно соприкасаются с воздухом. Их охлаждение происходит за счет излучения теплоты и естественной конвекции воздуха. Иногда такие трансформаторы снабжают защитным кожухом, имеющим жалюзи или же отверстия, закрытые сеткой. Этот вид охлаждения применяют в трансформаторах низкого напряжения при их установке в сухих закрытых помещениях.

Масляно-водяное охлаждение Нагретое в трансформаторе масло посредством насоса прогоняется через охладитель,в котором циркулирует вода. Это наиболее эффективный способ охлаждения, так как коэффициент теплопередачи от масла в воду значительно выше, чем в воздух. Одновременно масло проходит через воздухоохладительи фильтр, где освобождается от нежелательных включений.

5 Исто́чник ЭДС — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой .
Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
Напряжение - это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи.

Плотность тока. Отношение величины тока I к площади поперечного сечения проводника S называется плотностью тока и обозначается буквой j, ранее плотность тока обозначалась греческой буквой δ (дельта).

6. Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи.

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью - в нее подключены иные генераторы.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

К сложным электрическим цепям относят цепи, содержащие несколько источников электрической энергии, включенных в разные ветви. Ниже на рис. изображены примеры таких цепей.

Для сложных электрических цепей неприменима методика расчета простых электрических цепей. Упрощение схем невозможно, т.к. нельзя выделить на схеме участок цепи с последовательным или параллельным соединением однотипных элементов. Иногда, преобразование схемы с ее последующим расчетом все-таки возможно, но это скорее исключение из общего правила.



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 265; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.205.2.207 (0.018 с.)