Стойкость к механическим воздействиям тароупаковочного материала. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Стойкость к механическим воздействиям тароупаковочного материала.



Стойкость к механическим воздействиям характеризуется формоустойчивостью при статических нагрузках, вибростойкостью и стойкостью к ударным нагрузкам, оптимальными значениями физико-механических свойств (прочности и деформации). Требование формоустойчивости вызвано несколькими причинами, такими, как необходимость длительного хранения в штабелях, когда нижние ряды испытывают значительные деформации; воздействие жидких и летучих веществ, находящихся внутри тары, особенно в условиях повышенных температур и сопутствующего набухания материала; наличие острых граней и твердых частиц внутри тары и т.д.

Для транспортной тары, работающей в условиях постоянного возникновения ударов и колебаний, которые часто носят случайный характер и вызывают в материале возмущения различной амплитуды, требования механической прочности и стойкости к деформациям являются доминирующими. Характер деформации, появление поверхностных трещин, изменение структуры напряженного материала, особенно в условиях контакта с агрессивной средой, зависящие от интенсивности напряжения и активности среды, должны всегда учитываться при выборе материала.

Химическая стойкость тароупаковочного материала

Под химической стойкостью материала относительно конкретной среды понимается отсутствие набухания упаковочного материала в контактирующей среде, отсутствие потерь продукции через стенки тары, а также стабильность свойств материала под действием среды. Изменение физико-химических и механических свойств материала под действием агрессивной среды может привести к разрушению тары: растрескиванию, потере формоустойчивости и герметичности, т.е. к преждевременному износу.

Герметичность тароупаковочного материала

Герметичность - отсутствие обмена между содержимым тары и внешней средой. По этому признаку различают абсолютно, плотно и хорошо укупоренную тару. Абсолютно укупоренная тара непроницаема для газов; плотно укупоренная - дня паров воды; хорошо укупоренная предохраняет продукцию от случайного проливания или высыпания. При изготовлении упаковки из полимерных и комбинированных материалов наиболее целесообразна герметизация с применением сварки; непременным требованием при этом является прочность и плотность сварного шва.

Проницаемость тароупаковочного материала

Проницаемость - переход компонентов и/или содержимого через стенки упаковки. Для большинства товаров общим требованием является минимальная проницаемость для воды и водяных паров, кислорода, агрессивных газов и т.п.; отсутствие миграции микроорганизмов и продуктов их жизнедеятельности, обеспечение радионуклидной защиты; распространенным требованием часто является непроницаемость для УФ-лучей. Проницаемость - это процесс переноса вещества (газа, пара и т.д.) через материал (пленка, мембрана, ткань), обусловленный наличием перепада давления, концентрации или температуры по обе стороны материала. Проницаемость определяется, прежде всего, структурой и плотностью материала и в зависимости от этого может изменяться в широких пределах.

Технологичность тароупаковочного материала

Технологичность тароупаковочного материала обеспечивает возможность изготовления тары, заполнения ее продуктом и герметизации высокопроизводительными методами при малых трудовых затратах с использованием эффективного автоматизированного фасовочно-упаковочного оборудования. Материал, пригодный для этого, должен иметь достаточно высокую механическую прочность, жесткость (для обеспечения требуемой формы упаковки) или эластичность, должен легко воспринимать полиграфическую печать; обязательным требованием является способность к образованию прочного герметичного сварного шва; материал должен характеризоваться однородностью по толщине, цвету, прозрачности, отсутствием электризуемости и слипаемости в рулоне.

 

Для реализации своей основной функции - обеспечить защиту содержимого от действия комплекса разрушающих факторов - упаковка должна иметь высокие барьерные свойства, т.е. обладать достаточной механической прочностью

Механические показатели упаковочного материала определяются по стандартным методикам. Определенные требования должны выполняться при выборе формы и конструкции тары, следует избегать резких переходов, острых граней и углов, а также участков, на которых могут концентрироваться внутренние напряжения, снижающие стойкость тары к ударным воздействиям.

 

34 Санитарно-гигиенические требования к упаковочным материалам для продуктов питания

Санитарно-гигиенические требования, включают следующие положения:

- в состав упаковочного материала не должны входить высокотоксичные вещества, обладающие кумулятивными свойствами и специфическим действием на организм (канцерогенность, мутагенность, аллергенность и др.);

- упаковочный материал не должен изменять органолептические и физиологические свойства продукции, а также выделять вредные вещества в количествах, превышающих допустимые с гигиенической точки зрения уровни миграции.

В процессе санитарно-гигиенического исследования, проводимого специально сертифицированными для этой цели организациями, определяется, какие соединения и в каких количествах переходят (мигрируют) из упаковочного материала в контактирующую с ним пищевую или др. продукцию, потребляемую человеком.

Для упрощения испытаний, как правило, исследуют не конкретные пищевые продукты, а искусственные модельные среды, имитирующие свойства того или иного реального пищевого продукта).

Органолептическая оценка тароупаковочного материала

Органолептический метод (органолептика) — метод определения показателей качества продукции на основе анализа восприятий органов чувств зрения, обоняния, слуха, осязания, вкуса.

Органолептическая оценка тары — сенсорный анализ образца с помощью обоняния, вкуса, зрения, осязания и слуха. Основано на высокой чувствительности вкусового и обонятельного аппарата человека и позволяет по привкусу, запаху, внешнему виду выявить недопустимое воздействие исследуемого материала на пищевой продукт (или наоборот).

Санитарно-химическое исследование упаковочного материала

Санитарно-химическое исследование – осуществляют аналитическими методами. Результат – количественная оценке миграции посторонних веществ (мономеров, вспомогательных веществ) из упаковки в пищевой продукт в трех фазах: твердой, жидкой и газообразной. Определяют компоненты исследуемого материала в вытяжках, получаемых при экспозиции образцов в модельной среде при конкретных температурно-временных условиях. В вытяжках химическими методами определяют:

§ количество веществ, входящих в рецептуру материала (для полимеров – мономер, пластификатор, стабилизатор, краситель, наполнитель и пр.);

§ содержание тяжелых металлов – свинец, цинк, медь, мышьяк и др.

Токсилогическое исследование тароупаковочного материала

Токсикологическое исследование устанавливает критерий токсичности. Его осуществляют на живых объектах (микроорганизмы, насекомые, крысы, кролики, морские свинки, обезьяны и др.). Подопытным вводят вытяжки или их компоненты и изучают биологическое действие на организм. Степень токсичности определяется дозой, вызывающей летальный исход у 50% или более особей за период наблюдения (показатель ЛД50). Высокотоксичные вещества – ЛД50<200 мг/кг массы, среднетоксичные – 200¸1000 мг/кг, малотоксичные – ЛД50 выше 1000 мг/кг. По результатам токсикологических исследований устанавливают допустимое количество миграции (ДКМ) веществ из упаковочного материала в продукт. Соответствие ДКМ гарантирует безопасность для здоровья людей при неограниченно продолжительном приеме упакованной продукции.

Полистирол

Полистирол – термопластичный аморфный полимер с формулой:

 

[-СН2-С(С6Н5)Н-]n

 

Структурная формула:

 

 

Полистирол – прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см3 (20°С), температура стеклования 93°С.

Для полистирола характерно коптящее пламя с цветочным сладковатым запахом (Этот запах корицы обычно можно обнаружить, уколов исследуемый предмет раскаленной иглой). Если к тому же предмет падает на пол с металлическим звоном то, скорее всего полистирол.

Это твердое, упругое, бесцветное вещество. Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жесткий, аморфный полимер с невысокой механической прочностью при растяжении и изгибе. Полистирол имеет низкую плотность, низкую термическую стойкость, обладает отличными диэлектрическими свойствами и весьма низкой прочностью при ударе. Он легко деформируется при относительно невысоких температурах (80°C). При контакте с жирами выделяет мономер стирола. Для улучшения свойств полистирола его модифицируют различными сополимерами и подвергают сшиванию.

Полистирол – дешёвый крупнотоннажный термопласт; характеризуется высокой твёрдостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, растворяется в ароматических и хлорированных алифатических углеводородах. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола. Так, повышения теплостойкости и прочности при растяжении (на ~ 60 процентов) достигают сополимеризацией стирола с акрилонитрилом или a-метилстиролом, повышения прочности и ударной вязкости (от 5-10 до 50-100 кДж/м2) – получением привитых сополимеров стирола с 5-10% каучука, например бутадиенового (ударопрочный полистирол), а также тройных сополимеров акрилонитрила, бутадиена и стирола (т.н. АБС-пластик). Заменой акрилонитрила на метилметакрилат синтезируют прозрачные тройные сополимеры.

Стирол горюч и взрывоопасен. Пределы взрывоопасности в смеси с воздухом при комнатной температуре от 1,1 до 6,1 объемн. %. Допустимая концентрация паров в воздухе не выше 0,5 мг/м систематическое вдыхание паров стирола в концентрации выше допустимой приводит к хроническому заболеванию печени.

Полистирол относится к группе весьма инертных пластмасс. Он стоек к действию щелочей и галогеноводородных кислот. Нестоек к действию концентрированной азотной кислоты и ледяной уксусной кислоты.

Основным методом производства стирола в технике до сих пор является каталитическое дегидрирование этилбензола при высоких температурах.

ПОЛИСТИРОЛ УДАРОПРОЧНЫЙ

Ударопрочный полистирол высококачественный листовой материал, производится для процессов термо- или вакуумного формования. HIPS используется в производстве наружной рекламы, деталей холодильников, сантехники, игрушек, пищевой упаковки и тому подобное. Поверхность материала может быть глянцевой, матовой, гладкой или тисненой, с зеркальной поверхностью, различных цветов. Возможно изготовление листов методом соэкструзии. Это позволяет соединить два слоя различных цветов или добавить верхний слой с глянцевой поверхностью.

Ударопрочный полистирол обладает определенной эластичностью и тем самым расширяет возможность его использования при изготовлении светотехнических изделий сложной конфигурации с глубокой вытяжкой. Коэффициент светопропускания (35-38%) и белизна полностью соответствуют существующим в России стандартам на светотехнические изделия.

Основные преимущества: повышенная ударопрочность слабая чувствительность к надрезам легкость морозостойкость до –40°С влагостойкость отличная формируемость легкость в обработке химическая стойкость к кислотам и щелочам

В своем «родном» состоянии полистирол представляет собой довольно хрупкий материал, непригодный для многих задач. Поэтому в производстве в исходное сырье добавляют специальные добавки, повышающие ударную прочность и гибкость, и таким образом получают ударопрочный полистирол. Одной из разновидностей ударопрочного полистирола является фреоностойкий полистирол, применяемый в производстве холодильного оборудования. Структура поверхности: матовая с обеих сторон или с одной стороны глянцевая (верхний глянцевый слой получают путем соэкструзии с полистиролом общего назначения), тисненная. При необходимости лист с одной стороны обрабатывается коронным разрядом, на лист наносится защитная термоформируемая пленка. При наружном применении добавляется УФ-стабилизатор, обеспечивающий защиту от пожелтения под воздействием УФ-излучения.

Полистирол светотехнический является одной из разновидностей ударопрочного полистирола, полностью заменяет акриловое стекло при изготовлении конструкций с внутренней подсветкой. В отличие от оргстекла имеет только одну глянцевую поверхность. Высокая популярность светотехнического полистирола обуславливается большей ударной прочностью (по сравнению с акрилом), легкостью обработки, стойкостью к окружающей среде и меньшей стоимостью.

Ударопрочный полистирол является более экономичным вариантом по сравнению с оргстеклом из-за низкой плотности, а так же возможностью применения более тонких (2-3 мм) листов благодаря повышенной ударопрочности по сравнению с оргстеклом (3-5 мм), что обеспечивает экономию в 2 раза, из расчета на 1 кв. м. светорассеивателя..

Катушки, кассеты и бобины для магнитофонной ленты, цоколи радиоламп, облицовочные плиты, шкалы приборов, скобы и хомуты для крепления кабелей, аккумуляторные банки, ручки инструментов и приборов, пленки, абажуры, детали клемм, футляры, принадлежности для бритья, игрушки, посуда, плитки для отделки мебели, пудреницы, крышки для банок и бутылок, коробки, детали электрических выключателей, авторучки – этот перечень изделий из полистирола можно было бы продолжать еще долго. Применение полистирола очень разнообразно – от пленки в конденсаторах толщиной 0,02 мм до толстых плит из пенополистирола, используемых в качестве изоляционного материала в холодильной технике.

 

Вспененный полистирол

Антипирен и суспензионный вспенивающийся полистирол — две составляющих вспененного полистирола.

Вспененный полистирол представляет собой гранулы от двух до восьми миллиметров. Каждая гранула пенопласта — это несколько микроскопических равномерно распределённых плотных, заполненных воздухом клеток.
1м3 вспененного полистирола заполнен заключённым в 3х-6ти миллиардах закрытых ячеек воздухом на 98%.

Такая структура даёт вспененному полистиролу уникальные свойства, ведь во многом благодаря низкой теплопроводности, близкой к теплопроводности неподвижного воздуха он и получил всемирную популярность.

Материалы на пенопластовой основе, как, собственно говоря, и сам пенопласт получаются из вспененного полистирола. Этот материал используется в качестве сырья для приготовления пенопласта, при изготовлении мебели, для транспортировки хрупких изделий, а так же в качестве набивки форм, объёмов и пустот при транспортировки хрупких изделий.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 965; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.211.66 (0.017 с.)