Каковы особенности обработки информации в третичных зонах коры больших полушарий? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Каковы особенности обработки информации в третичных зонах коры больших полушарий?



Третичные зоны задних отделов мозга располагаются, как уже говорилось, на границе между затылочными, височными и постцентральными областями полушария и составляют зону перекрытия корковых отделов зрительного, слухового, вестибулярного кожно-кинестетического анализаторов. Эти зоны формируются только у человека и созревают позднее, чем все остальные зоны задних отделов коры, полностью вступая в работу лишь к 7-летнему возрасту. Все это дает основание предположить, что описываемые нами третичные образования играют особую роль в осуществлении межанализаторных синтезов и что при их участии осуществляется как синтез сигналов внутри одного анализатора, так и перенос структур возбуждения из одного анализатора в другой. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. В третичных полях на основе синтеза всех афферентных раздражении и с учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.). Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Каковы последствия экспериментального разрушения передних отделов коры?

Представители животного мира Разрушение передних (двигательных) отделов коры Разрушение задних (сенсорных) отделов коры
Птица Продолжает летать; изменений в движениях не заметно Четко ориентируется; выбирает площадку, на которую садится
Собака Движения конечностей, противоположных очагу разрушения, нарушаются; паралич противоположных конечностей, который, однако, частично претерпевает обратное развитие Частично страдают реакции на экстероцептивные стимулы
Обезьяна Стоит с помощью Значительное нарушение процессов восприятия (частично восстанавливающихся)
Человек Полный и стойкий паралич конечностей, противоположных очагу разрушения Дифференцированное и необратимое нарушение отдельных форм чувствительности

Другая причина противоречивости результатов стала ясна из сравнительного анализа эффектов разрушения коры головного мозга. Оказалось, что разрушение коры головного мозга у птиц (у которых кора едва намечена) приводит к относительно незначительным результатам; у мыши подобное разрушение вызывает также небольшие изменения поведения; у собаки объем этих изменений возрастает, и они делаются более стойкими; у обезьяны дифференцированность и стойкость нарушений поведения, возникших в результате разрушения ограниченных участков мозга, становится несравненно более отчетливой; у человека локальные разрушения мозга вызывают стойкие нарушения различных психических процессов. Таким образом, на последовательных ступенях эволюции поведение животного в разной степени зависит от высших отделов мозга (в частности от его коры): чем выше на эволюционной лестнице стоит животное, тем в большей степени его поведение регулируется корой и тем больше возрастает дифференцированный характер этой регуляции. Этот закон прогрессивной кортикализации функций — один из основных законов мозговой организации поведения — является ключом к пониманию причины тех противоречий, которые наблюдали отдельные авторы, изучавшие мозговую организацию поведения животных.

Роль коры головного мозга животных в организации специальных видов поведения была хорошо изучена известным американским психологом К. С.Лешли и великим русским физиологом И. П. Павловым. Следующий пример дает возможность проиллюстрировать те факты, с которыми столкнулся первый из этих исследователей, и показать трудности, связанные с решением вопроса о локализации сложных психических функций в коре головного мозга животных. Внутренние физиологические механизмы функций коры головного мозга животных по анализу и переработке сенсорной информации были с полной отчетливостью установлены работами школы И.П.Павлова, которые хронологически предшествовали всем только что упомянутым исследованиям. Все эти исследования дали возможность убедиться в том, что кора головного мозга является аппаратом, обеспечивающим не столько элементарные сенсорные функции, сколько сложный процесс анализа и синтеза поступающей информации, и сделать тем самым шаг вперед в понимании основных физиологических законов этой сложнейшей деятельности.

Хирургическое разрушение отдельных участков мозга — метод, которым в течение ряда поколений пользовались физиологи для изучения функций отдельных систем мозга, является далеко не идеальным методом исследования. Каждое хирургическое вмешательство вызывает кровоизлияние (с последующим образованием рубцов) и, таким образом, — обширные изменения мозговой ткани, что существенно затрудняет анализ роли разрушенного участка коры в построении соответствующей функции. Вот почему в последнее время стали успешно применяться другие — бескровные — методы выключения определенных участков мозга. К числу их относится местное охлаждение отдельных участков мозга, смазывание отдельных зон мозга алюминиевой пастой (Прибрам, 1960, 1969) и, наконец, воздействие на участки мозга постоянным током (Спинелли и Прибрам, 1967), нарушающим их нормальное функционирование.

В каких отделах нервной системы расположены структуры, отвечающие за нервную регуляцию движений и положения тела в пространстве?

Нервная регуляция работы скелетных мышц осуществляется двигательными центрами ЦНС. Они должны гарантировать стро­го необходимую степень возбуждения и торможения иннервирующих эти мышцы мотонейронов, чтобы возникающие мышечные сокращения обеспечивали только нужное движение — не больше и не меньше. Однако точное выполнение движений возможно толь­ко в случае адекватного исходного положения туловища и ко­нечностей. Нервная регуляция соответствия позы и движения, их правильного сопряжения — одна из важнейших функций двига­тельных центров.

В спинном мозге сенсорные афферентные волокна образуют мно­жество связей с мотонейронами, главным образом — через интер­нейроны. От того, какие связи задействованы, зависит активация или торможение определенных движений.

Организм используют нужные программы, не привлекая выс­шие нервные центры к разработке деталей их выполнения.

Высшие двигательные системы включают все супраспинальные центры, участвующие в двигательной регуляции. Функции позы и их координация с целенаправленными движениями контролиру­ются главным образом структурами ствола мозга, а сами целена­правленные движения требуют участия центров еще более высо­ких уровней. Побуждение к действию и стратегия движения формируются в подкорковых мотивационных областях и ассоциативной коре, затем преобразуются в програм­мы движения, те передаются в спинной мозг, а оттуда к скелетным мышцам для реализации.

Сенсорная информация и двигательная активность тесно взаимосвязаны. Для правильно­го выполнения движений необходимо, чтобы ко всем отвечающим за это структурам в каждый момент времени поступала с перифе­рии информация о положении тела и о ходе реализации состав­ленной программы.

Основные характеристики локомоции, т. е. перемещения чело­века в окружающей среде при помощи координированных движе­ний конечностей, запрограммированы на уровне спинного мозга



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 353; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.131.238 (0.004 с.)