Вопрос. Формулы для вычисления определителей второго и третьего порядков. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос. Формулы для вычисления определителей второго и третьего порядков.



Вопрос. Чему равен определитель треугольной матрицы?

Определитель треугольной матрицы равен произведению элементов на её главной диагонали.

Вопрос. Что такое невырожденная матрица.

Невырожденная матрица (иначе неособенная матрица) ― квадратная матрица, определитель которой отличен от нуля. В противном случае матрица называется вырожденной.

 

Вопрос. Решение матричных уравнений с помощью обратной матрицы.

Обратная матрица

 
 

Пусть имеется квадратная матрица n-го порядка

Матрица А-1 называется обратной матрицей по отношению к матрице А, если А*А-1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...Аn) называется невырожденной, если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.

2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.

3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.

4. Записать обратную матрицу А-1, которая находится в последней таблице под матрицей Е исходной таблицы.

 

Вопрос. Какие матрицы называются эквивалентными (равносильными)?

Эквивалентные матрицы

Пусть R и S два векторных пространства размерности n и m соответственно над числовым полем K, и пусть A линейный оператор отображающий R в S. Выясним, как меняется матрица оператора A при изменении базисов в пространствах R в S.

Выберем произвольные базисы в пространствах R в S и обозначим через и соответственно. Тогда (см. в линейные операторы) векторному равенству

y=Ax. (1)

соответствует матричное равенство

y=Ax. (2)

где х и у векторы x и y, представленные в виде координатных столбцов в базисах и соответственно.

Выберем теперь в пространствах R и S другие базисы и . В новых базисах векторному равенству (1) будет соответствовать матричное равенство

y'=A'x'. (3)

Обозначим через Q и P невырожденные квадратные матрицы порядков n и m соответственно, которые осуществляют преобразование координат в пространствах R и S при переходе от старых базисов к новым (см.линейное пространство). Тогда связь между векторами в старых и новых базисах можно представить следующими равенствами:

x'=Qx, y'=Py. (4)

Тогда, учитывая (3) и (4), имеем

y'=Py=PAx=PAQ -1 x'. (5)

Обозначив T=Q −1, и учитывая (3) и (5) получим:

A'=PAT. (6)

Определение 1. Две прямоугольные матрицы A и B одинаковых размеров называются эквивалентными, если существуют две квадратные невырожденные матрицы P и T такие, что выполнено равенство

B=PAT. (7)

Отметим, что если A -матрица порядка m×n, то P и T квадратные матрицы порядков m и n, соответственно.

Из (6) следует, что две матрицы, соответствующие одному и тому же линейному оператору A при различном выборе базисов в пространствах R и S эквивалентны между собой. Верно и обратное утверждение. Если матрица A соответствует оператору A, а матрица B эквивалентна матрице A, то она соответствует этому же линейному оператору A при других базисах в R и S.

Выясним, при каких условиях две матрицы эквивалентны.

Теорема. Для того, чтобы две матрицы одинаковых размеров были эквивалентны между собой, необходимо и достаточно, чтобы они имели один и тот же ранг.

Доказательство. Необходимость. Так как умножение матрицы на квадратную невырожденную матрицу не может изменить ранг матрицы, то из (7) имеем:

rang B=rang A.  

Достаточность. Пусть задан линейный оператор A, отображающий пространство R в S и пусть этому оператору отвечает матрица A размера m×n в базисах в R и в S, соответственно. Обозначим через r число линейно независимых векторов из числа Ae 1, Ae 2,..., Ae n. Пусть линейно независимы первые r векторы Ae 1, Ae 2,..., Ae r. Тогда остальные n-r векторы выражаются линейно через эти векторы:

Aek= n cijAej, (k=r +1,... n)
j= 1
(8)

Зададим новый базис в пространстве R:

 

Тогда учитывая (8), имеем:

(9)

Далее выберем векторы в качестве векторов базиса в S:

fj'=Aej', j =1,2,..., r (10)

Дополним эти векторы некоторыми векторами до базиса в S.

Тогда матрица оператора A в новых базисах , согласно (9) и (10) будет иметь следующий вид:

(11)

где в матрице E ' -на главной диагонали стоят r единиц, а остальные элементы равны нулю.

Так как матрицы A и E ' соответствуют одному и тому же оператору A, то они эквивалентны между собой. Выше мы показали, что эквивалентные матрицы имеют один и тот же ранг, следовательно ранг исходной матрицы A равен r.

Из вышеуказанного следует, что произвольная m×n матрица ранга r эквивалентна матрице E ' - порядка m×n. Но E ' - однозначно определяется заданием размерности m×n матрицы и его ранга r. Следовательно все прямоугольные матрицы порядка m×n и ранга r эквивалентны одной и той же матрице E ' и, следовательно, эквивалентны между собой.

Вопрос.

Системы линейных алгебраических уравнений: основные понятия, виды

Определение СЛАУ

Определение

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

Упорядоченный набор значений называется решением системы, если при подстановке в уравнения все уравнения превращаются в тождество.

Пример

Задание. Проверить, является ли набор решением системы

Решение. Подставляем в каждое из уравнений системы и :

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является решением указанной СЛАУ.

Ответ. Набор является решением системы

Виды систем

Определение

СЛАУ называется совместной, если она имеет, хотя бы одно решение.

В противном случае система называется несовместной.

Пример

Система является совместной, так как она имеет, по крайней мере, одно решение ,

Пример

Система является несовместной, так как выражения, стоящие в левых частях уравнений системы равны, но правые части не равны друг другу. Ни для каких наборов это не выполняется.

Определение

Система называется определённой, если она совместна и имеет единственное решение.

В противном случае (т.е. если система совместна и имеет более одного решения) система называется неопределённой.

Определение

Система называется однородной, если все правые части уравнений, входящих в нее, равны нулю одновременно.

Пример

Определение

Система называется квадратной, если количество уравнений равно количеству неизвестных.

Пример

Система квадратная, так как неизвестных две и это число равно количеству уравнений системы.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 283; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.216.163 (0.015 с.)