Классификация электроизмерительных приборов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация электроизмерительных приборов



Электроизмерительные приборы можно классифицировать по следующим признакам:

  • методу измерения;роду измеряемой величины;роду тока;степени точности;принципу действия.

Существует два метода измерения. Классификация электроизмерительных приборов по методу измерения:

  1. Метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величин.
    Метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов.
    Классификация электроизмерительных приборов по роду измеряемой величины:
  • для измерения напряжения (вольтметры,милливольтметры, гальванометры);для измерения тока (амперметры, миллиамперметры, гальванометры);для измерения мощности (ваттметры);для измерения энергии (электрические счетчики);для измерения угла сдвига фаз (фазометры);для измерения частоты тока (частотомеры);для измерения сопротивлений (омметры).

Классификация электроизмерительных приборов по роду тока:
постоянного;переменного однофазного;переменного трехфазного тока.
Классификация электроизмерительных приборов по степени точности: по степени точности приборы подразделяются на следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; и 4,0. Класс точности не должен превышать приведенной относительной погрешности прибора, которая определяется по формуле:
Электромеханические измерительные приборы преобразуют входную электрическую величину, в механическую энергию поворотного измерительного механизма, на котором жестко закреплена стрелка-указатель.Угол поворота стрелки зависит от величины и скорости изменения приложенного к измерительному механизму электромагнитного поля, созданного входным сигналом.Вращение поворотного механизма осуществляется под действием двух противоположно направленных моментов: вращающий момент М, определяемый для всех приборов скоростью изменения электромагнитного поля и противодействующий момент, который создается пружинами различного вида. Закручивающиеся пружины выполняются из оловянно-цинковой бронзы. С их помощью создается тормозной момент, подводится ток к подвижной части механизма, и производится корректировка показаний прибора (установка на ноль)
Все множество электронных измерительных приборов разделяется на следующие классы. Класс В - измерители напряжений. Класс Г - измерительные генераторы сигналов и измерительные усилители. Класс Е- приборы для измерения распределенных параметров электрических цепей. Класс С - приборы для наблюдения за формой электрического сигнала. Класс Ч - приборы для измерения частоты и интервалов времени. Классы Ф и Ч - цифровые и комбинированные приборы.

Закручивающиеся пружины выполняются из оловянно-цинковой бронзы. С их помощью создается тормозной момент, подводится ток к подвижной части механизма, и производится корректировка показаний прибора (установка на ноль).
3) Аналоговые электромеханические измерительные приборы.

В них непосредственно оценивается электромагнитная энергия, подведенная к прибору непосредственно из измерительной цепи. Она преобразовывается в механическую энергию углового измерения подвижной части относительно неподвижной.Электромеханические измерительные приборы применяют для измерения тока, напряжения, мощности, сопротивления и других электрических величин на постоянном и переменном токе преимущественно промышленной частоты 50 Гц. Эти приборы относятся к приборам прямого действия. Эти приборы состоят из:1) Электрического преобразователя (измерительная цепь).2) Электромеханического преобразователя (измерительный механизм).3) Отсчетное устройство.
Измерительная цепь обеспечивает преобразование электрической измеряемой величины Х в некоторую промежуточную величину Y (ток, напряжение), функционально связанную с величиной Х. Величина Y непосредственно воздействует на измерительный механизм. По характеру преобразования измерительная цепь может представлять собой совокупность элементов (резисторов, конденсаторов, выпрямителей, термопар).

Различные измерительные цепи позволяют использовать один и тот же измерительный механизм при измерениях разнородных величин (ток, напряжение, сопротивление), меняющихся в широких пределах.
4) Классы точности измерения электроизмерительных приборов.Определение значений погрешностей измерений по классам точности измерений
Следует помнить, что никакое измерение, т.е. сравнение с эталонной величиной, не может быть выполнено абсолютно точно. Результат измерения всегда содержит некоторую ошибку. Кроме того, надо учесть, что измерение проводится не путем сравнения с самим эталоном, а с помощью измерительного прибора (который при поверке был сравнен с эталоном). Очевидно, что, измеряя с помощью этого измерительного прибора, мы не можем сделать ошибки меньшей, чем та, которая определяется погрешностью измерительного устройства.

Разность между показаниями прибора и действительным значением измеряемой величины называется абсолютной погрешностью D А.

D А = ê А ИЗМА ДЕЙСТ ê. (1)

Отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах, называется относительной погрешностью:

. (2)

Приведенные определения относительной и абсолютной погрешности не дают возможности узнать их величину, так как действительное значение измеряемой величины нам неизвестно. Определить величины погрешностей при электрических измерениях становится возможным, если известен класс точности прибора (gКЛ Т). Он дает предельную абсолютную погрешность, выраженную в процентах от номинального показания прибора (максимального при данном пределе измерения) А НОМ:

gКЛ Т = . (3)

Класс точности указан на шкале прибора (рис. 6).Зная класс точности прибора, можно легко определить абсолютную погрешность измерения D А:

D А = . (4)

Например, для катушки сопротивления в 1000 Ом класса точности 0,05 абсолютная погрешность:

D А = = 0,5 (Ом).  

Относительную погрешность также можно вычислить через класс точности прибора. По определению относительная погрешность:

. (5)

Учитывая, что действительное значение измеряемой величины А ДЕЙСТ и показания прибора А ИЗМ примерно равны (А ДЕЙСТ» А ИЗМ), и, используя формулу (4), получаем:

. (6)

Видно, что относительная погрешность измерений будет тем меньше, чем ближе снимаемые показания к номинальному значению для данного прибора, т.е. к концу шкалы. Следовательно, при работе с многопредельными ЭИП нужно так выбирать предел измерения прибора, чтобы показания считывались со второй половины шкалы. Следует помнить, что номинальное значение многопредельного ЭИП определяется положением, в котором стоит переключатель пределов при данном измерении.

При работе с многопредельными приборами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Под делением следует понимать не разность между штрихами, а разность между ними в соответствии с оцифровкой шкалы. Цена деления равномерной шкалы равна отношению номинального значения показания прибора (предела измерения) к общему числу делений N на шкале прибора: ЦД= . Численное значение измеряемой величины А И ЗМравно цене деления ЦД, умноженной на измеренное число делений N И ЗМ по шкале:

А ИЗМ = ЦД· N ИЗМ. (7)

Рассмотрим примеры определения погрешностей для многопредельных ЭИП.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 858; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.107.96 (0.005 с.)