Основными путями поступления ОВ и сдяв 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основными путями поступления ОВ и сдяв



в организм являются:

 

 

ОВ оказывают поражающее действие при попадании на раны, ожоговые поверхности. Попадая в организм, они должны преодолеть встречающиеся на пути барьеры – биологические мембраны.

Большинство ОВ хорошо всасывается через органы дыхания. В легких имеется огромная по площади (от 80 до 150 м2) альвеолярно-капиллярная мембрана, имеющая чрезвычайно тонкое строение. Здесь все создано для облегчения проникновения газов в кровяное русло и обратно, которое зависит от способности газов растворяться в жидких средах, от величины парциального давления газа, от величины легочной вентиляции, от скорости кровотока в легких и других факторов. Следует отметить, что эндотелиальные клетки легких получают кислород непосредственно из воздуха и очень чувствительны к гипоксии. В них проходят активные метаболические процессы по инактивации многих медиаторов и гормонов, поэтому для нормального их функционирования важны нормально протекающие процессы синтеза и инактивации биологически активных веществ в организме. По опасности резорбции ингаляционный путь можно сравнить с внутривенным введением веществ.

Вторым по значимости путем резорбции ОВ и СДЯВ является перкутанный. Кожа, как известно, состоит из эпидермиса, дермы, железистых придатков. ОВ и СДЯВ проникают через отверстия потовых и сальных желез, непосредственно через эпидермис и волосяные фолликулы. В силу наличия в коже жиролипоидного слоя проникновение воды, водных растворов ОВ и СДЯВ, большинства газов из-за их низкой растворимости в жирах при обычной температуре практически исключено. Через липопротеиновую мембрану кожи способны хорошо проникать вещества, растворяющиеся в жирах. Способствует всасыванию через кожу ее мацерация, нарушение целостности, воспаление, ожоги. Участки кожи, имеющие нежный тонкий эпидермис, отличаются меньшей барьерной функцией.

Энтеральный путь проникновения ОВ и СДЯВ имеет место лишь при употреблении зараженных продуктов питания и воды. Всасывание происходит уже в слизистой полости рта, при этом вещества не поступают в печень и не подвергаются значительному обезвреживанию. Многие ОВ и СДЯВ легко всасываются через слизистую желудка, особенно растворимые в воде. Кишечный эпителий легко пропускает ОВ и СДЯВ, при этом процесс всасывания будет во многом зависеть от скорости кровотока во внутренних органах, растворимости в жирах, перистальтики кишечника, объёмом содержимого желудка и кишечника. Воздействие ОВ и СДЯВ на организм в этом случае в большей мере будет зависеть от обезвреживающей функции печени.

Всосавшееся ОВ и СДЯВ через систему кровообращения попадает в различные органы и системы и проникает в ткани по законам диффузии, фильтрации и активного захвата клетками. Полагают, что в организме существуют три сектора распределения чужеродных веществ: внеклеточная жидкость (примерно 14 л), внутриклеточная жидкость (28 л) и жировая ткань. Объем, в котором распределяется ОВ и СДЯВ, зависит от его растворимости в воде и жирах. Все вещества по способности проникать в ткани можно условно распределить на три группы:

─ первая - электролиты, имеющие определенный заряд и поэтому их проникающая способность через мембраны будет зависеть от величины этого заряда;

─ вторая - неэлектролиты, нерастворимые в жирах, не имеют заряда, из проницаемость во многом зависит от величины молекулы, рН среды и биологического механизма проникновения;

─ третья - неэлектролиты, растворимые в жирах, обладающие большой скоростью проникновения через мембраны.

Основным препятствием для проникновения ОВ в ткани является клеточная мембрана. Толщина мембраны примерно 100 А (10 нм). Она имеет наружный и внутренний слои, состоящие из глобулярных белков, скрученных в виде клубочков. Эти белки имеют большое количество различных ферментных групп и сложные транспортные системы для перемещения веществ внутрь клетки. Имеются в мембране поры, выстланные белком. Молекулы белка соединены друг с другом дисульфидными мостиками. Промежуточные два слоя мембраны состоят из липидов, связанными с белками ионными связями. Слой белка и липидов представляют подвижную систему, скользящую по отношению друг друга. В них то появляются, то исчезают поры, пропускающие химические вещества. Мембрана имеет снаружи отрицательный, а внутри положительный заряды, что играет роль в пропуске через нее заряженных веществ. Рассматривая строение мембраны, можно прийти к выводу, что хорошей проницаемостью обладают жирорастворимые вещества, а проникновение водорастворимых веществ во многом зависит от величины их молекул и состояния транспортных систем. Однако это только схема построения мембраны клетки, так как выделяют еще несколько типов мембран с различным построением белково-липидной структуры. Но, несмотря на особенности строения различных мембран, в настоящее время признаются четыре основных типа проникновения веществ через эти образования:

─ метод простой диффузии в направлении градиента концентрации вещества. Проникновение веществ в этом случае будет зависеть от их молекулярной массы, пространственной конфигурации, степени ионизации и растворимости в липидах;

─ метод фильтрации через поры мембраны. Этим способом в основном проникают небольшие растворимые в воде молекулы вещества;

─ метод активного переноса или транспорта. Вещества переносятся системами белка мембран против градиента концентрации или заряда клетки;

─ метод пиноцитоза, когда микроскопические инвагинации клеточной мембраны захватывают капли жидкости, перемещают их через мембрану и в виде вакуоли транспортируют ее в нужное место клетки.

В результате распределения ОВ и СДЯВ в организме, они могут равномерно накапливаться в основном в жировой ткани, нерастворимые в воде яды в соединительной ткани, костной ткани и паренхиматозных органах. Накапливаясь в отдельных органах или тканях, ОВ и СДЯВ создают своеобразно "депо", которое при определенных условиях может вызывать рецидив отравления.

Поступившие в организм ОВ и СДЯВ претерпевают различные превращения или могут выделяться в неизменном виде. В организме существует неспецифическая система обезвреживания инородных соединений, попавших в организм, созданная в процессе эволюции человека. Попавшие в организм ОВ и СДЯВ также попадают под воздействие этой системы и теряют свои токсические свойства. Однако в процессе отдельных химических реакций токсичность ряда ОВ и СДЯВ может и возрасти в результате так называемого летального синтеза. Метаболические превращения происходят с помощью реакций окисления, восстановления, синтеза, протекающих в клетках эндоплазматической сети печени при участии различных ферментов, называемых микросомальными. Такие же превращения могут происходить под действием ферментов, расположенных в мембранах клеток, в других местах клетки и называемые немикросомальными.

Биологические процессы метаболизма, протекающие в эндоплазматической сети, происходят под воздействием микросомальных ферментов, таких как цитохром-Р-450, НАДФН2, цитохром-С, дегидрогеназы и др. Окислительно-восстановительные реакции, протекающие под воздействием микросомальных ферментов, могут быть сведены к одному общему механизму – гидроксилированию и восстановлению нитро- и азотосоединений.

Немикросомальное окисление и восстановление протекает под воздействием различных оксидаз и дегидрогеназ. В результате этих процессов в молекулы веществ вносятся активные группы – -ОН, -СО. Присоединение активных групп может усилить токсические свойства метаболитов по сравнению с исходными веществами (иприт, люизит). В результате окислительно-восстановительных реакций ОВ и СДЯВ превращаются в метаболиты, легче растворимые в воде и быстрее выводящиеся из организма. Они же могут вступать в дальнейшие реакции обезвреживания с присоединением к полученной активной группе гидроксильной, аминной, карбоксильной, эпоксидной групп или атома галогена, что приводит к полной утрате токсичности и выведению из организма. Эти, так называемые реакции конъюгации, протекают с образованием глюкуронидов (синильная кислота), эфиров серной кислоты (иприты, люизит), эфиров фосфорной кислоты, присоединением метильной группы (метилирование) -СН3, присоединением остатка уксусной кислоты (ацетилирование), соединений с глутатионом. Многие ОВ и СДЯВ теряют свою активность в результате реакции гидролиза под воздействием эстераз (ФОВ).

Выведение метаболитов ОВ и СДЯВ из организма во многом зависит от процессов обезвреживания и депонирования этих веществ. В первую очередь удаляются из организма вещества, находящиеся в неизмененном виде, затем яды, имеющие менее прочные связи, затем находящиеся в связанном виде с белками, липидами, углеводами. И в последнюю очередь выделяются яды, находящиеся в депо. Растворимые в воде соединения выделяются, как правило, почками без обратной резорбции в канальцах. Жирорастворимые вещества, выделяясь почками, подвергаются обратной резорбции в канальцах, поэтому процесс их выделения замедляется. Через ЖКТ выделяются нерастворимые в воде соединения, некоторые яды могут выделяться слизистой полости рта. Летучие вещества выделяются в основном через органы дыхания. Это самый скорый путь выделения газов. Знание путей выделения ОВ и СДЯВ из организма дает возможность находить их или их метаболиты в выделяемых биосубстратах (моче, кале, слюне, крови) в целях диагностики поражений, а также использовать в ходе лечения отравлений, стимулируя процессы выведения ядов.

Воздействуя на организм человека, ОВ и СДЯВ в виду своих физико-химических свойств, особенностей метаболизма, распределения и выделения могут оказывать местное, рефлекторное или резорбтивное действие.

Возникновение поражения на месте контакта с ОВ и СДЯВ может наблюдаться при попадании их на кожу, слизистые оболочки. При оценке биологического действия таких веществ используются такие определения, как ожог, раздражение, воспаление.

Многие ОВ и СДЯВ обладают рефлекторным действием, специфически возбуждая хеморецепторы, болевые рецепторы и другие. Рефлексы с них передаются в ЦНС и оказывают существенное влияние на деятельность всех органов и систем.

Подавляющее большинство ОВ и СДЯВ наряду с местным рефлекторным действием оказывают общее действие на организм или так называемое резорбтивное действие. Изменения в организме при этом могут носить обратимый или необратимый характер. Может нарушаться функция всех или отдельных органов и систем. При этом на формирование процесса поражения будет оказывать прямое влияние яда на биологические реакции, протекающие во всех тканях, или будет обусловливаться функциональными или морфологическими изменениями в отдельных органах или тканях (гипоксии, нарушения функции по­чек, печени и т.д.).

Выяснение механизмов взаимодействия ядов и тканевых структур имеет огромное значение, так как служит основанием для разработки средств оказания медицинской помощи и профилактики отравлений. Поступившие в организм яды могут оказывать токсический эффект в результате:

1. Мембранотоксического действия, которое обусловлено нарушением механизмов транспортировки различных веществ через клеточные мембраны вплоть до полного разрушения последних. Повреждающий эффект обычно является следствием изменения структуры белков, перекисного окисления липидов самой мембраны. Этот механизм является основной причиной нарушения жизнедеятельности клетки при отравлении многими веществами (КНД, УД, хлорированными углеводородами и др.).

2. Антиферментного действия, при котором происходит нарушение окислительно-восстановительных реакций в результате выключения тех или иных ферментных систем. Ферменты очень ранимые структуры, так как обладают специфическим действием, чрезвычайно высокой биологической активностью. Сам фермент не подвергается изменениям, однако, на поверхности его активного центра происходят различные биохимические реакции обмена, и достаточно блокировать или видоизменить поверхность активного центра или самого фермента, как данные реакции прекращаются. Целый ряд ОВ и СДЯВ взаимодействует с ферментными системами, блокируя или изменяя их работу. Существует три типа взаимодействия ядов с ферментами:

─ конкурентное действие – яд взаимодействует с биосубстратом за активный центр фермента, имея большое сродство к нему;

─ неконкурентное действие – яд взаимодействует с отдельными химическими группами фермента помимо его активного центра, изменяя его структуру в целом и тем самым, блокируя его работу;

─ летальный синтез – вводимое вещество под воздействием активных центров ферментов вступает в биохимические реакции с образованием более токсичного соединения, чем само вещество (иприты, люизит).

3. Мутагенного действия, при котором некоторые ОВ путем воздействия на структуру ДНК, нарушают процесс ее редупликации и тем самым размножение и обновление клеток.

4. Антиметаболического действия, в ходе которого некоторые яды в силу схожести по химическому строению заменяют отдельные соединения в их биохимических реакциях, что приводит к выработке новых химических соединений, несвойственных данному организму, а это, в свою очередь, нарушает дальнейший ход обменных реакций в организме.

5. Нарушения биоэнергетических процессов, что связано с нарушением функционирования митохондриальной электротранспортной цепи с сопредельным фосфорилированием и накоплением энергии.

 

Классификация и общая характеристика современных боевых отравляющих веществ (БОВ).

Наиболее распространенное деление ОВ принято по тактическому назначению и физиологическому действию.

По тактическому назначению ОВ распределяются на следующие группы:

1. В зависимости от эффекта поражающего действия ОВ их принято подразделять на:

 

2. В зависимости от поведения на местности в условиях боевого применения все ОВ принято разделять на:

Причём при характеристике ОВ принято учитывать: агрегатное состояние (жидкость, пар, твёрдое вещество), растворимость в воде в процентах при 20°С, летучесть ОВ, устойчивость к гидролизу (определяет продолжительность поражающего действия), температуру кипения или плавления (определяет устойчивость и стойкость на местности).

 

3. По быстроте развития клинического эффекта все ОВ разделяются:

1) На быстро действующие, не имеющие скрытого периода и приводящие к развитию клиники поражения в течение 1 часа (ФОВ, синильная кислота и др.);

2) На медленно действующие, когда эффект воздействия проявляется позднее 1 часа и имеется скрытый период (иприты, фосген и др.).

Однако в ряде случаев быстрота воздействия зависит от агрегатного состояния ОВ и путей проникновения в организм. Так, Vi газы при воздействии в виде капель через кожные покровы вызывают поражение в течение 1 ‑ 4 часов, а при воздействии в виде паров ингаляционно в течение 30 ‑ 60 минут.

В странах НАТО в зависимости от уровня производства ОВ подразделяют:

на табельные ОВ, состоящие на вооружении (ФОВ, иприт, BZ, CS, CR);

на резервные ОВ, которые в настоящее время не производятся, но могут быть изготовлены в достаточном количестве (синильная кислота, фосген, азотистый иприт, хлорацетофенон, адамсит);

на запасные ОВ.

 

4. По токсическому действию на организм ОВ можно разделить на группы:

1. Отравляющие вещества нервно-паралитического действия (нервные газы): Зарин (GB), Зоман (GD), Ви-газы (VX).

2. Отравляющие вещества кожно-резорбтивного действия (везиканты): Иприт (H), Азотистый иприт (HN), Люизит (L).

3. Отравляющие вещества общеядовитого действия: Синильная кислота (AC), Хлорциан (CK).

4. Отравляющие вещества удушающего действия: Хлор (Cl), Фосген (CG), Дифосген (DP).

5. Отравляющие вещества раздражающего действия (стерниты):

Дифенилхлорарсин (DA), Дифенилцианарсин, Адамсит (DM),

Си – Эс (CS), Си-Ар (CR).

6. Отравляющие вещества слезоточивого действия (лакриматоры): Хлорацетофенон (CN), Бромбензилцианид (CA), Хлорпикрин.

7. Отравляющие вещества психохимического действия (психодислептики): Диэтиламид лизергиновой кислоты (LSD-25), Би-зет (BZ).

 

группа: Токсины.

1. Стафилококковый энтеротоксин типа А (SEA)

2. Стафилококковый энтеротоксин типа В (SEB)

3. Ботулинический токсин типа А (XR)

4. Тетродотоксин (TTX)

5.Сакситоксин (TZ)

 

 

В зависимости от физико-химических свойств сильнодействующие вещества (СДЯВ) могут относиться к той или иной группе ОВ по токсической и физиологической классификации.

Боевое состояние - вид состояния ОВ применяемого на поле боя с целью достижения максимального эффекта.

Виды боевого состояния могут быть следующими:

─ пар ‑ размеры частиц соответствуют молекулам или атомам вещества;

─ аэрозоль ‑ взвешенные в воздухе твердые или жидкие частицы вещества. При размере частиц от 10-6 до 10-3 см мы говорим о тонкодисперсном аэрозоле или туманообразном состоянии вещества. Такие частицы вещества практически не оседают на местности и, следовательно, не заражают объекты. При размере частиц от 10-3 до 10-2 см мы говорим о грубодисперсном аэрозоле или мороси. Такие частицы быстро оседают и заражают местность и различные объекты;

─ капли ‑ частицы вещества размером более 0,05 см, быстро оседающие на местности.

Такие же рабочие состояния имеют и СДЯВ.

ОВ и СДЯВ в состоянии пара или мелкодисперсного аэрозоля, заражая воздух, поражают организм человека в основном через органы дыхания, кожные покровы и слизистые. Количественная характеристика заражения воздуха в этом случае носит название массовой концентрации -С, обозначающей количество ОВ и СДЯВ в единице объема зараженного воздуха и выражающейся в г/м3.

ОВ и СДЯВ в виде грубодисперсного аэрозоля и капель заражают местность, боевую технику, обмундирование, ИСЗ, а также водоисточники, продукты питания. Они способны поражать людей в момент применения через органы дыхания, кожные покровы, слизистые, а также в последующем при испарении через те же органы и системы. Количественной характеристикой степени заражения местности будет являться плотность заражения ‑ Q, означающей количество ОВ, находящееся на единице площади и выражающееся в г/м2.

Многие ОВ и СДЯВ растворяются в воде и способны вызывать поражение при употреблении ее внутрь. Количественной характеристикой заражения воды является концентрация вещества, содержащегося в единице ее объема и выражающаяся в г/м3.

Возможность применения ОВ во многом определяется их физико-химическими свойствами. К числу наиболее значимых физико-химических свойств следует отнести температуру кипения и плавления, определяющих агрегатное состояние вещества в момент применения. Известные ОВ, СДЯВ в настоящее время в обычных условиях представляют собой жидкости, газы или твердые вещества, однако в зависимости от условий производства они могут находиться и в другом агрегатном состоянии. Так, фосген или синильная кислота могут находиться в жидком состоянии в боеприпасах даже при температуре выше их температуры кипения. От величины температуры плавления или замерзания зависит возможность применения ОВ в холодное время года. Некоторые ОВ имеют температуру замерзания, близкую к нулю (иприт, синильная кислота) и поэтому применение их в зимнее время возможно только при добавлении различных добавок с целью снижения температуры плавления.

От температуры кипения во многом зависит такая характеристика ОВ и СДЯВ, как летучесть. Она определяется максимальной концентрацией паров при данной температуре воздуха. Чем ниже летучесть, тем дольше сохраняются вещества на местности, тем дольше они оказывают поражающее действие. Считается, что ОВ с температурой кипения до 150о относятся к высоко летучим нестойким веществам, а выше 150о ‑ к стойким мало летучим ОВ. Единицей измерения летучести является количество вещества, содержащего в единице объема его насыщенного пара при данной температуре. Однако такую концентрацию можно создать только в закрытой системе, в боевых же условиях концентрация ОВ за счет испарения, как правило, в 10 ‑ 100 раз меньше максимальной.

Важными характеристиками ОВ и СДЯВ являются растворимость в воде, устойчивость к гидролизу, плотность и удельный вес. От растворимости будет зависеть степень заражения водоисточников, от устойчивости к гидролизу ‑ продолжительность нахождения их на местности в условиях различных температур и влажности. Плотность оказывает значительное влияние на способность веществ проникать в заглубленные сооружения, в складки местности. От удельного веса во многом зависит поведение в воде. Способность ОВ и СДЯВ проникать в резинотехнические изделия, лаки, краски и другие материалы зависит от температуры окружающей среды и способности раство­ряться в маслах, жирах и других растворителях. Так растворимость ипритов в жирах с увеличением температуры среды на 10о увеличивается в 2 раза. Скорость впитывания в пористые материалы прямо пропорциональна поверхностному натяжению и обратно пропорциональна вязкости. Увеличивая вязкость, можно значительно замедлить его впитывание в грунт, пористые материалы и, тем самым, сохранить его поражающее действие на более длительное время. Следует заметить, что дегазация вязких ОВ значительно затруднена.

Практически все ОВ и СДЯВ обладают способностью сорбироваться пористыми материалами. Эта способность зависит от размеров заряда молекулы ОВ, а также от природы сорбирующего материала. Универсальным сорбентом для многих ОВ и СДЯВ является активированный уголь, однако и он не сорбирует вещества с молекулой малых размеров (НСN, СО). Хорошей способностью к сорбции обладают ткани, брезент. Об этом следует помнить при оказании помощи зараженным ОВ и СДЯВ, так как существует опасность их десорбции, особенно при повышении температуры

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 235; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.97.157 (0.039 с.)