Чисельне розв’язання трансцендентних рівнянь. Опис методів дихотомії (половинного ділення), хорд, дотичних, комбінованого методу хорд та дотичних



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Чисельне розв’язання трансцендентних рівнянь. Опис методів дихотомії (половинного ділення), хорд, дотичних, комбінованого методу хорд та дотичних



До трансцендентних функцій відносять всі неалгебраїчні функції:

Показникові ах, логарифмічні , , тригонометричні sin x, cos x, tgx, ctgx, обернені тригонометричні та інші.

Нелінійні рівняння, які містять трансцендентні функції називаються нелінійними трансцендентними рівняннями.

Розв’язком нелінійного рівняння на ЕОМ називається вектор , координати якого при підстановці в початкове рівняння перетворює його в тотожність.

В нелінійному рівнянні виду

і-та координата вектора називається і- тим коренем рівняння, а а1, а2, …, ат - коефіцієнтами рівняння. Нехай маємо рівняння , де – неперервна, монотонна нелінійна функція, яка має на відрізку єдиний корінь , тобто добуток , причому , де – задана похибка обчислень. Потрібно знайти значення кореня з заданою похибкою (рис. 1.2.1.).

Рисунок 1.2.1. – Графічна інтерпретація методу половинного ділення.

Алгоритм методу (рис.1.2.1.) оснований на багатократному ділені навпіл і звужуванні досліджуваного відрізка , який отримали в результаті попереднього дослідження функції (відокремлення коренів).

 

Метод половинного ділення

Метод половинного ділення – це найпростіший метод уточнення кореня рівняння. Він сходиться для будь-яких неперервних функцій , в тому числі недиференційованих. Швидкість сходження невелика

.

Алгоритм методу

1) На відрізку вибираємо точку , яка розділяє його на два рівних відрізки і , довжина яких рівна і знаходиться за формулою

2) Перевіряємо чи , якщо так, то – точний корінь початкового рівняння і переходимо до пункту 6.

3) У випадку, коли , то з двох отриманих відрізків і вибираємо той, на кінцях якого функція приймає значення протилежних знаків, тобто, якщо , тоді залишаємо відрізок і точку переносимо в точку ( ); якщо , то залишаємо відрізок і переносимо точку в точку ( ) і переходимо до пункту 1.

4) Процес ділення відрізка навпіл виконується доти, поки на якомусь етапі, або середина відрізка буде коренем, або буде виконана умова закінчення ітераційного процесу: .

5) У цьому випадку за наближене значення кореня вибирають .

6) Вивід результатів. Кінець алгоритму.

7) Відомо, що при цьому похибка не перевищує , де – число ітерацій.

Схема алгоритму розв'язання нелінійного рівняння методом половинного ділення представлена на рисунку 1.2.2.

Рисунок 1.2.2. – Схема алгоритму розв'язання нелінійного рівняння методом половинного ділення

 

Метод хорд.

· Метод хорд є одним з найбільш поширених методів розв’язання алгебраїчних і трансцендентних рівнянь. В літературі він також зустрічається під назвою "метод лінійного інтерполювання" і "метод пропорційних частин".

· Постановка задачі

· Розглянемо рівняння , де неперервна нелінійна функція, яка на відрізку монотонна, диференційована і має єдиний корінь (тобто ). Потрібно знайти наближене значення кореня з заданою похибкою .

· Суть методу хорд полягає в тому, що на достатньо малому відрізку дуга функції замінюється хордою ab, яка її стягує. За наближене значення кореня приймається точка х1 перетину хорди з віссю (рис.1.2.3.а).

 

Рисунок 1.2.3. – Графічна інтерпретація методу хорд і процедури визначення рухомого кінця хорди

Рівняння хорди, яка проходить через точки має вигляд

Знайдемо значення , для якого , тобто для нерухомого кінця:

Ця формула називається формулою методу хорд. Тепер корінь знаходиться всередині відрізка . Значення кореня можна уточнити за допомогою метода хорд на відрізку , тоді нове наближене значення кореня х2 знаходиться за формулою

.

Аналогічна для всякого -го наближення до точного значення кореня даного рівняння використовується формула:

Процес стягування хордою продовжується багаторазово доти, поки не одержано наближений корінь із заданим степенем точності

де – наближені значення коренів рівняння , відповідно на і -му ітераційному кроці; – задана точність обчислень.

Слід відмітити, що розглянутий випадок (рис.1.2.3.а) перетину функції відрізку не є єдиним. Існує ще три варіанти перетину функції, кожний з яких відрізняється напрямком побудови хорд і відповідно рухомими кінцями відрізку. Наприклад, на рис.1.2.3.а,б рухомий кінець відрізку а, а на рис.1.2.3.в,г рухомий кінець – і відповідно формула для нього має вигляд:

Для автоматизації цього алгоритму необхідно розробити правило для автоматичного вибору рухомого кінця хорди і відповідно формули для обчислення наближеного значення кореня. Існує два правила визначення рухомого кінця хорди.

Комбінований метод.

Методи хорд і дотичних дають наближення кореня з різних сторін відрізку . Тому їх часто використовують в поєднанні один з одним, і процес уточнення кореня нелінійного рівняння проходить скоріше.

Постановка задачі

Нехай дано рівняння , де неперервна нелінійна функція, яка на відрізку монотонна, диференційована і має єдиний корінь (тобто ). Потрібно знайти наближене значення кореня з заданою похибкою .

Використаємо комбінований метод хорд і дотичних з урахуванням поведінки функції на відрізку . Якщо f'(x)Чf''(x)>0, то метод хорд дає наближення кореня з недостачею, а метод дотичних – з залишком (рис.1.2.4.а,б). Якщо ж f'(x)Чf''(x)<0, то методом хорд отримуємо значення:

 

Рисунок 1.2.4. – Геометричний зміст комбінованого методу .

методом дотичних – з недостачею (рис.1.2.4.в,г). Однак в усіх випадках справжній корінь знаходиться між наближеними коренями, які отримані за методом хорд і методом дотичних, тобто виконується нерівність а< хn < x < хn<b, де хn – наближене значення кореня з недоліком, `- з надлишком.

Суть методу полягає в тому, що на досить малому відрізку (отриманому при відокремлені коренів) дуга функції з одного кінця відрізка стягується хордою, а з другого – дотичною. Тобто, якщо сумістити обидва методи, то після знаходження коренів відрізок на кожному кроці ітерації звужується шляхом переносу кінців відрізка в точки перетину хорди та дотичної з віссю .

Наближене значення кореня нелінійного рівняння визначається відповідно до таких правил:

Правило 1. Якщо добуток першої на другу похідну функції більший за нуль: , (рис. 1.2.4.а, б) то рухомим для методу хорд є кінець a, і наближене значення кореня з боку кінця a обчислюється за формулою хорд:

.

Для методу дотичних рухомим є кінець , і наближене значення кореня обчислюється за формулою дотичних:

.

Правило 2. Якщо добуток першої на другу похідну функції менший за нуль: (рис. 1.2.4. в, г), то рухомим для методу хорд є кінець b, і наближене значення кореня з боку кінця b обчислюється за формулою хорд:

.

Для методу дотичних рухомим є кінець a, і наближене значення кореня обчислюється за формулою дотичних:

.

Комбінований метод дуже зручний при оцінці похибки обчислень. Ітераційний процес продовжується доти, поки не стане виконуватися нерівність . За наближене значення кореня приймають , де і – наближені значення кореня відповідно з недостачею та з надлишком.



Последнее изменение этой страницы: 2016-07-15; просмотров: 389; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.80.173.217 (0.006 с.)