Восприятие и использование насекомыми электромагнитных полей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Восприятие и использование насекомыми электромагнитных полей



Насекомым принадлежит наибольшее представительство среди животных, составляющее около 70% их видового состава. Обилию видов насекомых соответствует многообразие их адаптаций к условиям среды. Насекомые не имеют себе равных по разнообразию режимов питания и форм взаимоотношений с другими животными, растениями и микроорганизмами. Насекомые по-разному реагируют на ЭП в зависимости от их частоты и напряженности. Немаловажное значение имеет продолжительность действия ЭП, состояние насекомого и биологическая ситуация.

За последние годы получено большое количество доказательств влияния магнитного поля Земли на жизнедеятельность пчел. Обнаружено, что пчелы ориентируются в геомагнитном поле (например, при строительстве сотов), воспринимают направление сторон света, а регулярные изменения суточных циклов величины поля используют для ориентации во времени (биологические часы). Медоносная пчела (apis mellifera) воспринимает и напряженность, и направление магнитных полей.

Механизмы восприятия магнитного поля пчелами пока не имеют убедительного объяснения. После открытия биомагнетита (Fe3О4) сначала у хитонов, затем у пчел, а теперь и у многих других организмов (китов, голубей и т.д.) более правдоподобным представляется механизм, основанный на ферромагнитных свойствах этого материала (магнетизм и супермагнетизм).

Тело пчелы содержит миллионы микроскопических кристалликов магнетита Fe3О4.Предполагается, что они размещаются в передней части брюшка, при помощи которого пчела может реагировать на внешние магнитные поля, например, поле Земли.

Естественное ЭП, порождаемое колебаниями брюшка электростатически заряженной пчелы, используется в системе внутригнездовой связи. Пчела – сигнальщица, обнаружившая обильный источник корма, заряжается трением об опорный субстрат. Наличие заряда и колебания брюшком порождают изменение напряженности статического поля, без которого в перенаселенном пчелином жилище невозможна передача информации о месте расположения источника корма. Тем самым обеспечивается быстрая мобилизация рабочих пчел на его доставку в гнездо. Такое использование статического электричества обнаружено только у медоносной пчелы.

Пчелы чувствуют и изменение погодных условий. Перед дождем, как по чьей–то команде, дружно возвращаются в улей. Это явление объясняется тем, что до начала дождя или бури атмосфера сильно насыщается электричеством, и статический заряд у пчел сразу же возрастает. Это и служит им сигналом тревоги, призывающим к возвращению в улей.

Специфичность реагирования насекомых на ЭП позволяет использовать это средство для управления поведением насекомых. Высокая чувствительность насекомых к ЭП и изменение их структуры в периоды, предшествующие землетрясениям, открывает новые перспективы для прогнозирования землетрясений и некоторых других природных катастроф.

 

Механизмы биологического действия электромагнитных полей

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. Существует несколько механизмов действия ЭМП на биообъекты:

 

· тепловой механизм воздействия – связан с повышением температуры облучаемой ткани при относительно высоких уровнях облучающего ЭМП. Это происходит за счет возникновения в тканях токов смещения и проводимости, которые и вызывают нагревание.

· нетепловое или информационное воздействие – когда температура повышается несущественно, но действие электромагнитных волн проявляется на организменном уровне при относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2).

 

Клетки различных тканей человеческого организма продуцируют очень слабые электрические сигналы, с помощью которых осуществляется межклеточное взаимодействие (т. н. «электромагнитный шепот»). В некоторых работах сообщается о регистрации сверхслабых магнитных полей, возникающих при работе сердца и головного мозга и составляющих всего 0,00001 – 0,0000001 мкТл. Тем не менее, даже столь слабые сигналы чутко улавливаются клетками живых организмов. Так, выработка сосудистого условного рефлекса у человека возможна уже при интенсивности ЭМП, составляющей менее 0,0001 В/м.

Учитывая тот факт, что данные величины на десятки порядков меньше теоретически рассчитанных показателей интенсивности ЭМП, при которых возможны энергетические (тепловые) эффекты, можно предполагать, что сверхслабые ЭМП в биологических системах выполняют именно информационную функцию. При этом биологические эффекты, обусловленные информационными взаимодействиями, зависят уже не столько от величины энергии, вносимой в ту или иную систему, сколько от вносимой в нее информации. Если чувствительность воспринимающих систем достаточно высока, передача информации может осуществляться при помощи весьма малой энергии. Из признания информационной роли естественных ЭМП следует одно очень важное обстоятельство: для живого организма огромное значение имеет не столько величина воздействия ЭМП, сколько характер последнего.

 

Параметры ЭМП, влияющие на биологическую реакцию

Варианты воздействия ЭМП на биоэкосистемы, включая человека, разнообразны: непрерывное и прерывистое, общее и местное, комбинированное от нескольких источников и сочетаемое с другими неблагоприятными факторами среды и т.д.

На биологическую реакцию влияют следующие параметры ЭМП:

· интенсивность ЭМП (величина);

· частота излучения;

· длительность воздействия;

· модуляция сигнала;

· сочетание частот ЭМП;

· периодичность действия.

Характерной особенностью воздействия ЭМП на живые организмы является его «резонансный характер». То есть, существенное значение имеют не столько интенсивность ЭМИ, сколько частотные характеристики, т. к. в случае совпадения последних с собственными колебаниями биомолекул клеточных мембран может происходить многократное усиление биологического действия. В этом же контексте можно рассматривать и исключительно высокую биологическую активность модулированных ЭМП. При этом модуляция, т. е. частота подачи импульсов ЭМП, будучи синхронизирована с собственными ритмами биологической системы, резко увеличивает эффективность воздействия ЭМП, причем независимо от основной (несущей) частоты. Установленная зависимость биологического эффекта ЭМП от их частотных характеристик позволяет объяснить тот факт, что переменное магнитное поле промышленных частот (50 – 60 Гц) оказывает выраженное воздействие на человека. Уже при интенсивности всего 0,2 – 0,4 мкТл, в то время как магнитное поле Земли, измеряемое в пределах 50 – 70 мкТл, не оказывает негативного влияния на биологические объекты и относится к естественным факторам окружающей среды.

Влияние ЭМП на органы и системы органов

Многочисленные исследования в области биологического действия ЭМП позволяют определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.

 

Влияние на нервную систему

Нервная система и тесно связанная с ней сердечно-сосудистая система являются потенциально наиболее уязвимыми для воздействия ЭМП, так как представляют собой биоэлектрические системы, способные реагировать на внешнее воздействие электрических сигналов. Именно функциональные нарушения нервной системы различного характера (головные боли, утомляемость, нарушения внимания и др.), широко распространившиеся среди обслуживающего персонала первых мощных радиолокационных станций, внедренных в систему противовоздушной обороны вскоре после Второй мировой войны, впервые привлекли внимание медиков к проблеме воздействия ЭМП на человека.

При воздействии полей малой интенсивности возникают существенные отклонения в передаче нервных импульсов, происходит угнетение высшей нервной деятельности, ухудшается память. При анализе влияния уровней магнитных полей был выявлен повышенный риск при уровнях 0,2 мкТл и более. Особую чувствительность к электромагнитному воздействию проявляет нервная система эмбриона на поздних стадиях внутриутробного развития.



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 648; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.252.14 (0.008 с.)