История развития Материаловедения как науки. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

История развития Материаловедения как науки.



История развития Материаловедения как науки.

Развитие материаловедения - основа прогресса. Вокруг нас повсюду материалы. И их создание - заслуга ученых. История развития общества связана с историей освоения материалов, технологии их получения и обработки каменный бронзовый, железный века. Материаловедение, как прикладная наука, сформировалась на рубеже 18—19 веков. В 19 в. материаловедение достигло теоретического уровня естественных наук. Материаловедение 19 в. — это, в первую очередь, материаловедение металлов. Важнейшую роль в развитии этого направления сыграли русские инженеры П. П. Аносов и Д. К. Чернов. 20 век — век открытия и создания новых материалов, обладающих уникальными свойствами. * Создал новый метод получения стали, объединив науглероживание и плавление металла. * Открыл критические точки фазовых превращений стали. Установил влияние термической обработки стали на её структуру и свойства. Появляются новые направления прикладного материаловедения, изучающего закономерности, определяющее строение и свойства различных материалов (полупроводников и диэлектриков, конструкционных материалов и материалов, различных композитов и полимеров и т. д.). Успехи современного материаловедения способствуют разработке высокоэффективных методов улучшения характеристик различных материалов, повышение их эксплуатационных свойств.

 

2. Классификация материалов.Осн.определения(материаловедение, конструкционные материалы, конструкц.прочность)

Классификация материалов: металлические, неметаллические и композиционные материалы. Металлические материалы подразделяются на цветные металлы, порошковые материалы. Неметаллические материалы: резина, стекло, керамика, пластические массы, ситаллы. Композиционные материалы являются составными материалами, в состав которых входят два и более материалов (стеклопластики).

Существует классификация материалов в зависимости от вида полуфабрикатов: листы, порошки, гранулы, волокна, профили и т. д.

Материаловедение – это наука, изучающая свойства конструкционных материалов и закономерности их изменения в зависимости от химического состава, температуры, фазового состояния, характера приложения нагрузки и других факторов. Конструкционные материалы - материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства. Разделяют на три группы: 1 – металлические; 2 – неметаллические; 3 – композиционные материалы. Конструкционная прочность – комплекс прочностных свойств, которые находятся в наибольшей корреляции (статистическая взаимосвязь двух или нескольких случайных величин) со служебными свойствами данного изделия, обеспечивают длительную и надежную работу материала в условиях эксплуатации.

На конструкционную прочность влияют следующие факторы:

конструкционные особенности детали (форма и размеры);

механизмы различных видов разрушения детали;

состояние материала в поверхностном слое детали;

процессы, происходящие в поверхностном слое детали, приводящие к отказам при работе.

Виды металлических материалов.

По принципу изготовления различают следующие группы металлических материалов: металлы, металлические сплавы, многослойные металлические материалы, материалы с поверхностным покрытием и спеченные сплавы. Металлы – простые крист. Вещ.

Ме сплавы: сталь, чугун (Fe+Углерод от 2 – 6,67%)

Al сплавы – обладают низкой плотностью. Медные сплавы (латунь и бронза). Латунь – сплав меди с цинком. Бронза – сплав на основе меди с добавкой олова, железа, никеля, спинца. Магниевае сплавы. Титанове сплавы. Никелеевые сплавы.

 

Группы неметаллических материалов

В группу немет. Мат. объеденены материалы нестественного и искусственного происхождения, органические и неорганические. Они не содержат в своей основе металлов. Материалы растительного происхождения ( древесина, лен, хлопок). Из них изготавливают доски, полотна, веревки, канаты и т.д.

Керамика: кирпич, камень, стекло и огнеупорные материалы. Изготавливают сосуды, тубы, огнеупорные изделия, элетроизоляторы. Минералы: алмаз, рубин, сапфир, гранит, мрамор, асбест, гипс. Цемент.

Полимерные материалы: резина, плстмасса.

 

Общие сведения о композиционных и ЦБ- материалов.

Композиционные материалы – материалы, образованные объемным сочетанием химически разнородных компонентов с четкой границей раздела фаз между ними. В строение композита выделяют наполнитель (дисперсную фазу) и связующее (матрицу). Композиты классифицируют по виду наполнителя и природе входящих в его состав компонентов. В зависимости от наполнителя можно выделить: 1) композиты с дисперсными частицами; 2) волокнистые композиты. По природе компонентов разделяют на 4 группы, содержащие следующие компоненты: металлы или сплавы; неорганические соединения (окиды, карбиды, нитриды); немет. Мат., органические соединения.

Целлюлозно-бумажные материалы

Волокнистые целл-бум мат. занимают далеко не последнее место среди конструкц. Мат. и выделяются в отдельную группу. Картонная тара – относительная дешевизна и возможность вторичной переработки.

Картон – листовой материал, состоящий из растительных волокон, обработанных сооств. Образом и соедин. В тонкий лист, в котром волокна связанны между собой поверхностными силами сцепления.

 

Классификация св-в материалов.

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волы);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материала хорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

 

 

Механические свойства материалов Виды деформаций

Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Механические свойства материалов, совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. Диаграмма деформации, Упругие свойства, Сопротивление пластической деформации, Характеристики пластичности, Характеристики разрушения, Временная зависимость прочности, Упругие свойства.

Наиболее простые виды деформациитела в целом:

растяжение-сжатие,

сдвиг,

изгиб,

кручение

 

Стекловолокниты.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя.

Карбоволокниты.

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).

Бороволокниты.

Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.

Органоволокниты.

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон.

Низкотемпературный отпуск

Проводят при температурах до 250 °C. Закалённая сталь сохраняет высокую износостойкость, однако такое изделие (если оно не имеет вязкой сердцевины) не выдержит высоких динамических нагрузок.

Среднетемпературный отпуск

Проводят при температурах 350-500 °C и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечивает высокие пределы упругости и выносливости

Высокотемпературный отпуск

Проводят при температурах 500—680 °C. При этом остается высокая прочность и пластичность, а также максимальная вязкость.

 

Термомеханическая обработка

Термомеханическая обработка стали заключается в сочетании механической обработки давлением (прокатки, штамповки) с термической обработкой (закалкой). Это позволяет повысить прочность стали как в результате наклепа, который получается при пластической деформации, так и вследствие закалки. Благодаря этому при термомеханической обработке удается достичь более высокого упрочнения, чем при обычной закалке.

1. Высокотемпературная термомеханическая обработка (ВТМО). Она заключается в том, что непосредственно после горячей обработки давлением (прокатки, штамповки), проводится резкое охлаждение— закалка.

2. Низкотемпературная термомеханическая обработка (НТМО). Сталь нагревают до аустенитного состояния, а затем охлаждают ниже температуры рекристаллизации, но выше температуры начала мартенситного превращения, т. е. в температурном интервале примерно 400—600°С.

3. Высокотемпературная поверхностная термомеханическая обработка (ВТМПО). Сущность такой обработки заключается в том, что деталь подвергается поверхностному нагреву ТВЧ и одновременно обкатывается роликами.

 

Поверхностное упрочнение

Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная закалка.

В результате поверхностной закалки увеличивается твердость поверхностных слоев изделия с одновременным повышением сопротивления истиранию и предела выносливости.

Общим для всех видов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева деталей. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева.

Наибольшее распространение имеют электротермическая закалка с нагревом изделий токами высокой частоты (ТВЧ) и газопламенная закалка с нагревом газово-кислородным или кислородно-керосиновым пламенем.

 

Динамические испытания

ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ, измерение силы воздействия движущихся тел на среду, сопротивляющуюся их движению. При помощи динамических испытаний выясняют, например, воздействие автомобиля на мост, по которому он проезжает, либо силу удара шасси самолета о землю при посадке.

Ударная вязкость – это работа удара, отнесенная к начальной площади поперечного сечения образца в месте концентратора. Тзмерение ударной вязкости материалов является основным динамическим испытанием. Наиболее распространение получили методы Изота и Шарпи. Оба метода основаны на разрушении образца с надрезом одним ударом маятникого копра. Образец закрепляют в опорах и наносят удар: по стороне с зарубкой – метод Изода, по противоположному надрезу стороне – метод Шарпи.

При испытании по Изоду измеряют энергию, поглощенную консолью при переломе образца во время опыта.

При испытании по Ш арпи измеряют энергию, поглощенную бруском при переломе образца в процессе опыта.

Ударную вязкость определяют к ак отношение работы разрушения, затраченной на деформацию и разрушение ударным изгибом надрезанного образца, к начальной площади поперечного сечения образца в месте надреза.

Испытания ударной вязкости ш ироко применяется для оценки склонности материала к хрупкому разрушению при низких температурах. Преимущество этого метода является простота эксперимената, учет влияния скорости нагружения и концентраций.

 

Испытания на долговечность.

Долговечность материалов определяют испытаниями на усталость, ползучесть, длительную прочность, износ, коррозию.

Испытание на ползучесть. Медленная пластическая деформация материала под действием постоянной нагрузки, создающей в детали напряжения, превышающие предел упругости, но меньшие, чем предел текучести при данной темпер., называется ползучестью. Различают

ползучесть при низких и высоких температурах. Испытания проводятся под действием растяжения.

Трибологические испытания. При трибологических испыт. Основными понятиями являются износ и износостойкость. Износ – изменение размеров, формы, массы или состояния поверхности вследствие разрушения поверхностного слоя изделия при трении. Износ-ть – способность материалов сопротивл. Изнашиванию в условиях внешнего трения. Износ деталей машин, элементов строительных конструкций зависит от условий трения и св-в материала изделия. Износ, сопровождается отрывом частиц материала и потерей массы.

 

Параметры переработки

Требования к обработке или переработке материала.

Спец. треб. к инструменту.

Ассортимент

Какие мат. есть в распоряжении?

В каком виде мат. поставляется?

Проблемы после выбора материала.

СТОИМОСТЬ МАТЕРИАЛА

Какова стоимость необработанного материала?

Стоимость предпологаемых требований переработки?

Стоимость переработанного мат.

Основная цель при выборе требуемого материала состоит в определении материала, который обладает найлучшим балансом свойсв.

 

История развития Материаловедения как науки.

Развитие материаловедения - основа прогресса. Вокруг нас повсюду материалы. И их создание - заслуга ученых. История развития общества связана с историей освоения материалов, технологии их получения и обработки каменный бронзовый, железный века. Материаловедение, как прикладная наука, сформировалась на рубеже 18—19 веков. В 19 в. материаловедение достигло теоретического уровня естественных наук. Материаловедение 19 в. — это, в первую очередь, материаловедение металлов. Важнейшую роль в развитии этого направления сыграли русские инженеры П. П. Аносов и Д. К. Чернов. 20 век — век открытия и создания новых материалов, обладающих уникальными свойствами. * Создал новый метод получения стали, объединив науглероживание и плавление металла. * Открыл критические точки фазовых превращений стали. Установил влияние термической обработки стали на её структуру и свойства. Появляются новые направления прикладного материаловедения, изучающего закономерности, определяющее строение и свойства различных материалов (полупроводников и диэлектриков, конструкционных материалов и материалов, различных композитов и полимеров и т. д.). Успехи современного материаловедения способствуют разработке высокоэффективных методов улучшения характеристик различных материалов, повышение их эксплуатационных свойств.

 

2. Классификация материалов.Осн.определения(материаловедение, конструкционные материалы, конструкц.прочность)

Классификация материалов: металлические, неметаллические и композиционные материалы. Металлические материалы подразделяются на цветные металлы, порошковые материалы. Неметаллические материалы: резина, стекло, керамика, пластические массы, ситаллы. Композиционные материалы являются составными материалами, в состав которых входят два и более материалов (стеклопластики).

Существует классификация материалов в зависимости от вида полуфабрикатов: листы, порошки, гранулы, волокна, профили и т. д.

Материаловедение – это наука, изучающая свойства конструкционных материалов и закономерности их изменения в зависимости от химического состава, температуры, фазового состояния, характера приложения нагрузки и других факторов. Конструкционные материалы - материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства. Разделяют на три группы: 1 – металлические; 2 – неметаллические; 3 – композиционные материалы. Конструкционная прочность – комплекс прочностных свойств, которые находятся в наибольшей корреляции (статистическая взаимосвязь двух или нескольких случайных величин) со служебными свойствами данного изделия, обеспечивают длительную и надежную работу материала в условиях эксплуатации.

На конструкционную прочность влияют следующие факторы:

конструкционные особенности детали (форма и размеры);

механизмы различных видов разрушения детали;

состояние материала в поверхностном слое детали;

процессы, происходящие в поверхностном слое детали, приводящие к отказам при работе.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 3903; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.90.236.179 (0.055 с.)