Игра двух лиц с нулевой суммой. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Игра двух лиц с нулевой суммой.



Методы теории игр наиболее развиты для конечной одноходовой игры двух лиц с нулевой суммой (т.е. сумма выигрышей игроков равна 0). Такие игры еще называют антагонистическими.

Пусть и – участники игры. Саму игру опишем с помощью, так называемой платежной матрицы (матрицы игры) порядка . Строки этой матрицы – это чистые стратегии игрока , а столбцы – чистые стратегии игрока /

Предполагается, что каждому игроку известны все элементы платежной матрицы.

Элемент определяет результат игры, а именно выигрыш игрока при выборе игроками и стратегий и соответственно.

В этом случае достаточно исследовать только платежную матрицу игрока .

В данной игре игрок стремится выбрать такую строку матрицы, чтобы максимизировать свой выигрыш, а игрок - такой столбец матрицы, чтобы минимизировать свой проигрыш.

 

Bj Ai B1 B2 B3 Bn
A1 α11 α12 α13 α1n
A2 α21 α12 α13 α2n
Am αm1 αm2 αm3 αmn

Рис. 4.1

 

Задачей теории игр является нахождение решения игры, т.е. определение для каждого игрока его оптимальной стратегии и цены игры.

Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш) независимо от поведения противника.

Ценой игры называется выигрыш (проигрыш), соответствующий оптимальным стратегиям игроков.

В теории игр наилучшим принято считать поведение игроков, при котором каждый игрок предполагает, что его противник не глупее ( принцип разумности ).

Если игрок А выбрал стратегию i, то его выигрыш составит

Отсюда максимальный гарантированный выигрыш

.

Стратегия, соответствующая называется максимильной стратегией, а - нижней ценой игры или максимином.

Игрок В, рассуждая аналогично может среди всех своих стратегий выбрать ту, которая обеспечит ему минимальный гарантированный проигрыш.

Стратегия, соответствующая называется минимаксной стратегией, а величина - верхней ценой игры или минимаксом.

Если игрок А будет придерживаться максимаксной стратегии, то он получает выигрыш не меньше максиминного значения, т.е.

Если игрок В придерживается минимаксной стратегии, то его проигрыш буде т не больше минимального значения, т.е.

В общем случае отношения между нижней и верхней ценой игры устанавливаются неравенством

Существуют игры, для которых . Элемент платежной матрицы, отвечающей этим стратегиям называется Седловой точкой. Ей отвечает цена игры :

Если , то игра выгодна игроку А.

При игра выгодна игроку В.

Если , то игра выгодна обоим игрокам и называется безобидной или справедливой.

Игра 2-х лиц без Седловой точки. Смешанные стратегии:

Одна из возможностей расширения стратегий игроков – разнообразить способ выбора своей стратегии, например, «случайно».

Как мы уже отмечали, в отсутствии Седловой точки, игрок А, применяя свою максиминную стратегию, выиграет не менее , а игрок В, применяя свою минимаксную стратегию, проигрывает не более , где . Применение чистых стратегий в каждой партии такой игры не дает возможность игрокам увеличить выигрыш , чем уменьшить проигрыш . Для того, чтобы это было возможным необходимо применять не одну, а несколько чистых стратегий, чередуя их случайным образом с какими-то частотами. Такая стратегия получила название смешанной (ее элементами являются чистые стратегии).

Смешанная стратегия имеет смысл при условии, что игра состоит из более чем одной партии.

Обозначим смешанные стратегии игроков А и В через

и , где

- вероятность (частота) применения игроком А чистой стратегии , - вероятность (частота) принятия игроком В чистой стратегии .

Причем и .

Чистые стратегии игроков А и В, для которых вероятности и отличны от 0 называются активными.

Теорема (основная теорема теории игр) (теорема минимакса).

Любая конечная игра двух лиц с нулевой суммой имеет, по крайней мере, одно решение (т.е. пару оптимальных стратегий, в общем случае смешанных) и соответствующую цену.

Решение игры, не имеющей Седловой точки может осуществляться различными методами. Рассмотрим наиболее важные из них.

Графическое решение игр вида и :

Этот метод применим только к играм, в которых хотя бы один игрок имеет только две стратегии.

Рассмотрим следующую игру (без Седловой точки)

Ожидаемые выигрыши игрока А, соответствующие чистым стратегиям игрока В, представлены в таблице

В А

 

Отсюда видно, что ожидаемый выигрыш игрока А линейно зависит от . В соответствии с критерием минимакса игрок А должен выбирать так:

Чистые стратегии игрока В Ожидаемые выигрыши игрока А
 
 
N

Пример:

Вj Аi В1 В2 В3
  А1 доминирующая одинаковые
В4

А1       6
А2        
А3        
А4        

 

Замечания: Стратегии, для которых есть доминирующие и дублирующие стратегии можно отбрасывать.

Вj Аi В1 В2 В3 В4
А1        
А4        

В3 доминирующая

 

Вj Аi В1 В2 В4  
А1        
А4        
        2

 

 
 

 

 
 

  - цена игры   Чистая стратегия Игрок В Ожидаемый выигрыш игрока А    
  -6х1 + 8 z1  
  -2х1 + 6 z2  
  1 + 1 z3  
       
 
 
z

 
 

 

Чистая стратегия Игрока А   Ожидаемый выигрыш Игрока В
  -4у1+6
  1+1
   

 

Балансовые модели.

Модель межотраслевого баланса:

В основе этих моделей лежит балансовый метод, т.е. метод взаимного сопоставления имеющихся ресурсов, например, трудовых, и потребностей в них.

Как отмечено выше, балансовые модели строятся в виде числовых матриц. Такую структуру имеют межотраслевой и межрайонный баланс производства и распределения продукции в народном хозяйстве, модели развития отраслей, межотраслевые балансы производства и распределения продукции отдельных регионов, модели промфинпланов предприятий и фирм и т.д. Несмотря на специфику этих моделей, их объединяет не только общий формальный (матричный) принцип построения и единства системы расчетов, но и аналогичность ряда экономических характеристик. Это позволяет рассматривать структуру, содержание и основные зависимости матричных моделей на примере одной из них, а именно, на примере межотраслевого баланса производства и распределения продукции в народном хозяйстве.

Принципиальная схема межотраслевого баланса (МОБ) производства и распределения совокупного общественного продукта в стоимостном выражении приведена в таблице.

Производящие отрасли Потребляющие отрасли Конечная продукция Валовая продукция
      n
. . . n x11 x21 x31       xn1 x12 x22 x32       xn2 X13 x23 x33       xn3   … …   …   … …   … x1n x2n x3n       xnn Y1 Y2 Y3       Yn X1 X2 X3 … … … Xn
Амортизация Оплата труда Чистый доход С1 V1 С2 V2 С3 V3 …   … … Cn Vn      
Валовая продукция X1 X2   X3   Xn    

Первый квадрант МОБ – это шахматная таблица межотраслевых связей. Представляет собой квадратную матрицу порядка n, сумма всех элементов которой равняется годовому фонду возмещения затрат средств производства в материальной сфере.

Во втором квадранте представленная конечная продукция всех отраслей материального производства, направленная на потребление и накопление (характеризует отраслевую материальную структуру национального дохода).

Третий квадрант МОБ тоже характеризует национальный доход, но со стороны его стоимостного состава как сумму чистой продукции и амортизации. Сумма амортизации (Сj) и оплаты труда (Vj+mj) некоторой отрасли будем называть чистой продукцией этой отрасли и обозначить Zj.

Четвертый квадрант баланса отражает конечное распределение и использование национального дохода. Общий итог этого квадранта, как второго и третьего должен быть равен созданному за год национальному доходу. Рассмотрим два важнейших соотношения, отражающих сущность МОБ и являющихся основой его экономико-математической модели.

Во-первых, рассматривая схему баланса по столбцам можно сделать очевидный вывод, что итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:

, (5.1)

Во-вторых, рассматривая схему МОБ по строкам для каждой производящей отрасли, можно видеть, что валовая продукция той или иной отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции данной отрасли.

, (5.2)

Просуммируем по всем отраслям уравнение (5.1), в результате чего получим

Аналогичное суммирование уравнений (5.2) дает:

Отсюда следует соблюдение соотношения

(5.3)

Величины называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:

, (5.4)

Определение 1. Коэффициент прямых материальных затрат показывает, какое количество продукции i-ой отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-ой отрасли.

С учетом формулы (5.4) систему баланса (5.2) можно переписать в виде

, (5.5)

или в матричной форме

(5.6)

Система уравнений (5.5) или в матричной форме (5.6) называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева).

С помощью этой модели можно выполнить 3 варианта расчетов:

А) Задав в модели величины валовой продукции каждой отрасли (), можно определить объемы конечной продукции каждой отдельной отрасли ():

(5.7)

В) Задав величины конечной продукции всех отраслей (), можно определить величины валовой продукции каждой отрасли ():

(5.8)

С) Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых, в этом варианте расчета удобнее пользоваться не матричной формой модели (10.6), а системой линейных уравнений (5.5).

Пусть , то (5.9)

Или , (5.10)

Коэффициенты называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков.

Определение 2. Коэффициенты полных материальных затрат показывает, какое количество продукции i-ой отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-ой отрасли.

Анализ модели МБ приводит к следующим выводам:

а) – по определению;

б) , т.к. процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продуктов, чем создавалось;

в) - из содержательных систем .

Определение 3. Матрица называется продуктивной, если существует такой , что (10.11). Отсюда следует, что для продуктивной матрицы из (10.6) существует положительный вектор конечной продукции .

Для того, чтобы матрица была продуктивной, необходимо и достаточно, чтобы выполнялось одно из перечисленных ниже условий.

1) матрица неотрицательно обратима, т.е. существует обратная матрица .

2) матричный ряд сходится, причем его сумма равна .

3) наибольшее по модулю собственное значение матрицы , т.е. решения характеристического уравнения

строго меньше единицы

4) все главные миноры матрицы , порядка от 1 до n положительны.

Замечание. Более простым, но только достаточным признаком продуктивности матрицы является следующий признак , т.е. если величина наибольшего из сумм ее элементов в каждом столбце < 1, то матрица продуктивна.

Пример 1. Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат и вектор конечной продукции:

; .

Найти коэффициенты полных материальных затрат и вектор валовой продукции, заполнить схему межотраслевого материального баланса.

1. Определим матрицу коэффициентов полных материальных затрат с помощью формул обращения невырожденных матриц:

а) находим матрицу (Е – А)

;

б) вычисляем определитель этой матрицы:

;

в) транспортируем матрицу (Е – А):

;

г) находим алгебраические дополнения для элементов матрицы (Е – А)’

; ;

; ;

; ;

.

Таким образом, присоединенная к матрице (Е – А) матрица имеет вид:

;

д) используя формулу (5.9), находим матрицу коэффициентов полных материальных затрат:

.

Найдем величины валовой продукции трех отраслей (вектор Х), используя формулу (5.8):

.

3. Для определения элементов первого квадранта материального межотраслевого баланса воспользуемся формулой, вытекающей из формулы: . Из этой формулы следует, что для получения первого столбца первого квадранта нужно элементы первого столбца заданной матрицы А умножить на величину Х1 = 775,3; элементы второго столбца матрицы А умножить на Х2 = 510,1; элементы третьего столбца матрицы А умножить на Х3 = 729,6.

Составляющие третьего квадранта (условно чистая продукция) находятся с учетом формулы (5.1) как разность между объемами валовой продукции и суммами элементов соответствующих столбцов найденного первого квадранта.

Четвертый квадрант в нашем примере состоит из одного показателя и служит, в частности, для контроля правильности расчета: сумма элементов второго квадранта должна в стоимостном материальном балансе совпадать с суммой элементов третьего квадранта. Результаты расчета представлены в табл. 1.

 

Таблица 1

Производящие отрасли Потребляющие отрасли Конечная продукция Валовая продукция
     
  232,6 155,1 232,6 51,0 255,0 51,0 291,8 0,0 145,9 200,0 100,0 300,0 775,3 510,1 729,6
Условно чистая продукция 155,0 153,1 291,9 600,0  
Валовая продукция 775,3 510,1 729,6   2015,0

 

Раздел II. Задания для выполнения типового расчета

Задачи управления запасами.

Определить оптимальную стратегию заказа:

№ п/п № п/п
      0,05           0,03    
      0,05           0,03    
      0,05           0,03    
      0,05           0,04    
      0,05           0,04    
      0,05           0,04    
      0,05           0,05    
      0,05           0,05    
      0,05           0,04    
      0,03           0,04    
      0,04           0,04    
      0,04           0,03    

Задачи упорядочения.

Определить оптимальный порядок обработки изделия:

1. № дет.                
  1 маш.                
  2 маш.                

 

2. № дет.                
  1 маш.                
  2 маш.                

 

3. № дет.                
  1 маш.                
  2 маш.                

 

4. № дет.                
  1 маш.                
  2 маш.                

 

5. № дет.                
  1 маш.                
  2 маш.                

 

6. № дет.                
  1 маш.                
  2 маш.                

 

7. № дет.                
  1 маш.                
  2 маш.                

 

8. № дет.                
  1 маш.                
  2 маш.                

 

9. № дет.                
  1 маш.                
  2 маш.                

 

10. № дет.                
  1 маш.                
  2 маш.                

 

11. № дет.                
  1 маш.                
  2 маш.                

 

12. № дет.                
  1 маш.                
  2 маш.                

 

13. № дет.                
  1 маш.                
  2 маш.                

 

14. № дет.                
  1 маш.                
  2 маш.                

 

15. № дет.                
  1 маш.                
  2 маш.                

 

16. № дет.                
  1 маш.                
  2 маш.                

 

17. № дет.                
  1 маш.                
  2 маш.                

 

18. № дет.                
  1 маш.                
  2 маш.                

 

19. № дет.                
  1 маш.                
  2 маш.                

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 1785; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.251.99 (0.178 с.)