Азбука одноверевочной техники 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Азбука одноверевочной техники



Азбука одноверевочной техники

Оглавление

1. Предисловие. О технике одной веревки (СРТ)

2. Характеристика веревки

2.1. Прочность на разрыв

2.1.1. Визитная карточка веревки

2.1.2. Объявленная прочность на разрыв

2.1.3. Перегибание в узлах

2.1.4. Влияние воды и влажности

2.1.5. Старение и износ при использовании

2.1.6. Практическая прочность на разрыв

2.2. Надежность

2.2.1. Динамические нагрузки

2.2.2. Энергия падения

2.2.3. Пиковая динамическая нагрузка

2.2.4. Фактор падения

2.2.5. Время падения. Импульс силы

2.2.6. Факторы, уменьшающие нагрузку

2.2.7. Надежность статической веревки

2.3. Конструкция

2.4. Толщина

2.5. Вес

2.6. Удлинение

2.6.1. Удлинение при нормальном употреблении

2.6.2. Удлинение при поглощении динамического удара

2.7. Обрыв после некоторого употребления

3. Виды веревки

3.1. Динамическая веревка

3.2. Статическая веревка

3.2.1. Статико–динамическая веревка

3.3. Вспомогательные веревки и шнуры

4. Применение статической веревки в технике одной веревки

4.1. Функции веревки при работе в колодце

4.2. Крепление

4.3. Предел H0

4.4. Оптимальное расстояние между дублирующим креплением и точкой фиксации веревки

4.5. Не руби сук, на котором сидишь

4.5.1. Фиксация веревки сообразно расположению креплений

4.5.2. Амортизирующие узлы

4.5.3. Протекторы, подкладки, отклонители

4.5.4. Наращивание веревок при креплении

4.6. Нагрузки на горизонтально натянутую веревку

4.7. Нагрузки на V–образные крепления

4.8. Нагрузки при спуске и подъеме

4.9. О факторе падения при разрушении промежуточного крепления

4.10. Опасность для веревки от нагрева спускового устройства

5. Узлы и их применение в технике одной веревки

5.1. Узлы для привязывания веревки к открывающимся устройствам и открытым опорам

5.2. Узлы для привязывания веревки к неоткрывающимся устройствам и закрытым опорам

5.3. Узлы для связывания веревок и петель

5.4. Узлы специального назначения

5.5. Вспомогательные узлы

6. Приспособления из веревки

6.1. Веревочные петли

6.2. Страховочный конец

6.3. Педаль

7. Уход за веревкой

7.1. Маркировка. Биография веревки

7.2. Хранение

7.3. Периодическая проверка

8. Вместо заключения

Литература

Часть I

Предисловие.

Характеристика веревки

Прочность на разрыв

Всякая веревка имеет предел прочности и рвется при некотором значении медленно нарастающей нагрузки. Оно определяет ее статическую прочность на разрыв. Величина ее всегда объявляется производителем, но никогда реально не достигается в процессе эксплуатации веревки. Прежде чем объяснить, почему это так, посмотрим, как выглядит

Визитная карточка веревки

Обычно в фирменной упаковке, в которой поставляется альпинистская и спелеоверевка, есть небольшая карточка с более или менее подробной информацией о ее технических характеристиках. Это "визитная карточка" веревки, по которой мы знакомимся с ней и ее свойствами.

Таблицы 1 и 2 показывают, какая информация содержится в "визитных карточках" двух веревок разного типа, производившихся в 1983г. одной и той же фирмой – "Edelrid".

Сильнее всего впечатляют объявленные производителем численные значения прочности на разрыв для двух видов веревки. Это касается и всех прочих альпинистских и спелеоверевок, имеющихся на мировом рынке

Две тонны – приличная прочность для скромных 80 кг одного спелеолога со всем его снаряжением, но, несмотря на это, давайте посмотрим, насколько можно доверять такой величине, как объявленная прочность на разрыв.

Таблица 1

Динамическая основная веревка типа "Классик МД 72" d 11 мм

Прочность на разрыв 2350 кгс
Удлинение при разрыве 54 %
Максимальная динамическая нагрузка (при f = 1.78) 1090 кгс
Число выдерживаемых тестовых рывков 6–7
Удлинение при нормальном употреблении с нагрузкой 80 кг 7.6 %
Вес на метр 72 г

Таблица 2

Статическая веревка типа "Суперстатик" d 10 мм

Прочность на разрыв 2500 кгс
Удлинение при разрыве 29%
Максимальная динамическая нагрузка (при f=1) 1245 кгс
Число выдерживаемых тестовых рывков  
Удлинение при нормальном применении с нагрузкой 300 кг 2.5%
с нагрузкой 100 кг 9 %
Вес на метр 60 г

Объявленная прочность на разрыв

Величины объявленной прочности на разрыв, гарантируемые производителями, очень внушительны – от 1700 кг для 9–миллиметровой спелеоверевки "Interalp–Spelunca" до 3500 кг для 11–миллиметровой американской "Bluewater". То, на первый взгляд, создает впечатление едва ли не перестраховки при производстве веревки. Условия эксперимента, в котором определяется объявляемая прочность веревки, обычно существенно отличаются от условий, при которых веревка эксплуатируется в пещере. Поэтому из всех численных значений, определяющих технические характеристики любой динамической или статической веревки, нет более опасных успокаивающих данных, чем данные по прочности на разрыв. А это так, потому что:

– они относятся к предельной нагрузке, при которой веревка рвется, не будучи предварительно подверженной действию неблагоприятных факторов (наличие узлов, действие влаги, загрязнение глиной и т.д.);

– эти данные действительны только для новой веревки, и то в момент, когда она покидает заводской конвейер. Сразу же после этого под влиянием ряда факторов прочность на разрыв начинает постепенно уменьшаться и скоро значительно удаляется от первоначального значения.

Запомните:

– объявляемая прочность на разрыв не является показателем, по которому можно судить о надежности веревки;

– она относится только к ее первоначальному состоянию и к испытанию, при котором она была сухой, чистой и без узлов.

Чтобы получить более реальное представление об опасности, которой мы подверглись бы, если бы безоговорочно полагались на объявленную прочность, проследим подробнее, что происходит с веревкой после того, как она оказалась у нас в руках, и мы готовимся к спуску в очередной колодец.

Перегибание в узлах.

Когда веревку извлекают из транспортного мешка, на ней обязательно завязывают узел. Нужен ли этот узел, чтобы сделать петлю или связать одну веревку с другой, не имеет значения. Веревку невозможно использовать, пока на ней не завязан хотя бы один узел. Однако сразу же, как только на веревке завязан узел, ее прочность уменьшается вдвое. Например, при величине объявленной прочности 2350 кг после завязывания первой петли с узлом "восьмерка" прочность падает до 1290 кг. Или, если коэффициент надежности веревки (отношение прочности к номинальной нагрузке – в данном случае 100 кг, что приблизительно равно весу одного спелеолога с его личной экипировкой и несомым грузом) вначале равен 23, сразу после завязывания узла уменьшается до 13. Почему так получается?

Обычно силы, действующие на нагруженную веревку без узлов, распределяются равномерно по всему ее поперечному сечению, т.е. все нити, из которых она состоит, натягиваются одновременно (рис.1а).

Если веревка перегибается, как это происходит в петле любого узла, силы при нагружении распределяются неравномерно (рис.1б). Поэтому одни нити меньше натягиваются при нагружении веревки, чем другие. Часть нитей, находящихся на внешней стороне дуги, натягивается довольно сильно.

В зоне перегиба возникают и поперечные усилия, которые суммируются с продольными и дополнительно нагружают нити веревки (рис.1в). Вследствие комбинированного действия сил растяжения и сдвига веревка оказывается слабее там, где есть перегиб, чем на прямолинейных участках.

Чем сильнее она изогнута, тем в большей степени уменьшается ее прочность.

Поведение узлов при медленно нарастающей нагрузке до момента разрыва исследовалось много раз.

Рис. 1 Перегибание в узле.

На основе многократных испытаний опубликован ряд таблиц, которые показывают, на сколько процентов уменьшается прочность данной веревки при завязывании того или иного узла. Некоторое представление об этом можно получить из таблицы 3, составленной по данным испытания статической веревки.

Таблица 3

Вид узла Уменьшение прочности в %
Узлы для привязывания к опоре
Девятка 30 %
Восьмерка 45 %
Двойной булинь 47 %
Одинарный булинь 48 %
Бабочка 49 %
Проводник 50 %
Узлы для связывания веревки и петли
Двойной ткацкий 44 %
Встречная восьмерка 53 %
Встречный проводник 59 %

Поведение узлов при динамическом нагружении различно. Поэтому с точки зрения безопасности подобные данные надо просто принимать к сведению.

Запомните:

– узлы различных видов уменьшают прочность на 30–60%;

- чем меньше радиус кривизны в месте изгиба и больше сдавливание веревки, тем сильнее уменьшается ее прочность;

– наличие узлов не меняет динамических свойств веревки.

Влияние воды и влажности

Поглощение воды полиамидными волокнами, из которых состоит веревка, используемая у нас, вообще говоря, значительно. Величина его зависит от соотношения групп CH2 и CONH в молекулах данного волокна. Поэтому для веревок, которые не произведены одной и той же фирмой или не из одной и той же серии, наблюдаются некоторые различия, но в данном случае они не имеют большого значения.

Хотя не во всякой шахте есть текущая вода, влажность воздуха высока и часто достигает 100%. Проведенные эксперименты показывают, что влажность воздуха действует на прочность веревки так же, как если веревка навешена в колодце прямо по воде. А когда она намокает, теряется еще несколько процентов ее прочности. Таблица 4 показывает результаты испытаний новых статических веревок.

Таблица 4

Вид узла Состояние веревки Прочность в % от объявленной
Проводник сухая 50 %
мокрая 43 %
Восьмерка сухая 55 %
мокрая 52 %
Девятка сухая 74 %
мокрая 67 %

Запомните:

– когда веревка находится в колодце, всегда следует считать ее мокрой.

Надежность.

Динамические нагрузки.

Динамическими называются нагрузки, которые быстро изменяются по величине и направлению. При спуске в колодец направление продольных нагрузок на веревку не меняется. Надо иметь в виду, что это неверно для крючьев. Несмотря на принимаемые меры, всегда существует вероятность происшествий, таких как:

– мгновенная потеря и повторное восстановление контроля над спусковым устройством;

– проскальзывание обоих самохватов во время подъема и их повторное зацепление;

– случайное зацепление веревки за какой–нибудь выступ при подъеме одного спелеолога и внезапное отцепление во время выхода другого;

– неудачное начало спуска в колодец у основной опоры или неумелый выход оттуда с рывками верхней части веревки;

– разрушение основной или промежуточной опоры навески и т.д.

Последствиями таких происшествий является не только срыв спелеолога, которого должна удержать веревка, но и возникновение динамических нагрузок, которые значительно больше нагрузок при спуске и подъеме в нормальных условиях.

Хотим напомнить, что в пещере веревка никогда не используется отдельно и независимо от остального снаряжения, которым оснащены колодцы и сам спелеолог, а составляет звено так называемой страховочной цепи. Это совокупность всех элементов и снаряжения, которые в данный момент связаны посредством веревки: скала – крюк SPIT (самопробивающий шлямбурный крюк конструкции фирмы Societe de Prospection et d'Inventions Techniques – SPIT) или шлямбурный крюк, его ушко, "закладка" и пр. – карабин – веревка – спусковое устройство или самохват, страховочный конец – карабин – беседка – тело спелеолога. Как при спуске или подъеме, так и при падении возникающие статические или, соответственно, динамические нагрузки передаются каждому звену, включенному в цепь в данный момент.

Запомните:

– любая цепь прочна настолько, насколько прочно ее слабейшее звено. Страховочная цепь – не исключение из этого правила;

– из всех элементов страховочной цепи именно веревка имеет самые изменчивые характеристики и специфически ведет себя при динамических нагрузках;

– веревка подвергается самым большим нагрузкам при разрушении опоры или какого–либо элемента промежуточной навески и в случаях, когда еще при навеске данного колодца была сделана грубая ошибка, которая создала предпосылки для того, чтобы последствия внезапного падения были больше допустимых в данных конкретных условиях.

Энергия падения

Если подвесить тело определенного веса к концу веревки, она одновременно по всей длине, в том числе и в точке крепления, будет подвергаться действию силы, равной весу подвешенного груза. Однако если поднять тело на некоторую высоту и отпустить, сила рывка на верхнем конце веревке будет значительно больше.

Под действием гравитации падение любого тела ускоряется. Это означает, что его скорость тем больше, чем с большей высоты оно падает. В зависимости от массы и скорости в каждый момент полета тело обладает определенной энергией, которая называется энергией падения. Эта энергия тем больше, чем больше скорость и масса падающего тела. Следовательно, энергия падения зависит от веса G тела и высоты H, с которой оно падает: E=GH (табл.)

Таблица 5

Высота падения (м) Скорость падения (км/ч) Время падения (с) Энергия падения при весе падающего тела 80 кгс (кгс*м)
    0.45  
    0.64  
    1.01  
    1.42  
    2.02  

При остановке веревкой падения тела скорость его падает до нуля. При этом энергия падения должна превратиться в энергию деформации преимущественно веревки, а частично – и остальных элементов страховочной цепи, в том числе тела спелеолога.

Рис. 2. Удлинение и работа веревки при различной силе нагружения.

падения она будет ниже для более эластичной веревки и выше для той, которая слабее удлиняется (рис. 3).

Рис. 3. Зависимость ПДН от динамических свойств веревки.

Следовательно, сила динамического удара зависит не только от энергии падения, но также от способности веревки больше или меньше удлиняться. Поэтому неверно думать, что падению с определенной высоты всегда соответствует одинаковая пиковая динамическая нагрузка, как нельзя определять надежность веревки только на основании данных о ее прочности на разрыв.

При падении с одинаковой высоты тел различного веса возникает различная пиковая динамическая нагрузка. Даже имея очень большую прочность на разрыв, слабоэластичная веревка при задержании падения испытывает большую пиковую нагрузку, и наоборот.

Запомните:

– конкретное значение пиковой динамической нагрузки варьируется в очень широких пределах. Оно не зависит от абсолютной высоты падения, а определяется исключительно динамическими качествами веревки и фактором падения.

Фактор падения

Фактор падения f определяется отношением высоты падения к длине веревки, которая его задерживает: f=H/L. От него зависит степень падения, а от нее – нагрузка на страховочную цепь при его задержании веревкой.

Предположим, что мы подняли тело P на 2 м над точкой крепления веревки A (рис. 4а).

Если отпустить его, высота H свободного падения до его остановки веревкой будет равна 4 м, т.е. удвоенной длине веревке L. В этом случае фактор падения будет равен 2:

f=(высота падения)/(длина веревки)=H/L=4 м/2 м=2

В переводе с языка цифр это означает, что каждый метр веревки должен поглотить энергию, равную энергии свободного падения тела с высоты 2 м: 4 м высоты падения х 80 кгс веса = 320 кгс м энергии падения, распределенной на один метр веревки. Или, другими словами, фактор определяет так называемую относительную высоту падения, т.е. сколько метров свободного полета приходится на один метр длины веревки, задерживающей падение.

Рис. 4. Фактор падения: а – при H=2L, f=2; б – при H=L, f=1

Поглощаемая энергия падения одинакова для каждого сантиметра веревки и вызывает одинаковое удлинение равных участков. Поэтому и общее удлинение веревки в сантиметрах пропорционально ее длине. Следовательно, способность веревки поглощать энергию будет тем больше, чем больше ее длина. Вот почему нагрузка на веревку, принимающую на себя динамический удар, зависит не от абсолютной, а от относительной высоты, т.е. фактора падения.

Чтобы подкрепить этот вывод, давайте поднимем груз не на 2 м, а на 20 м над точкой подвеса веревки. Для этого понадобится веревка длиной 20 м, а высота падения составит 40 м. В этих условиях фактор падения не изменится: f=40/20=2. Не изменится и энергия, которую должен поглотить каждый метр 20–метровой веревки (40 м высоты х 80 кгс веса = 3200 кгс м энергии падения, распределенной на 20 м веревки = 160 кгс м энергии на каждый метр веревки). Следовательно, веревка нагружается в той же степени, что и при падении с 4–метровой высоты, так как фактор падения один и тот же. Действительно, во втором случае общая энергия падения в 10 раз больше, но и веревка длиннее в 10 раз, а следовательно, в 10 раз больше ее способности поглощать энергию. Из–за этого работа (A), которую совершает один метр веревки при одном и том же факторе падения, одинакова и не зависит от абсолютной высоты. Поэтому и пиковая динамическая нагрузка на данную веревку будет одна и та же как при падении с двух, так и с десяти и более метров, если фактор падения одинаков, т.е. ПДН тоже не зависит от абсолютной высоты падения, а только от его фактора. При прочих равных условиях: массе тела, динамических свойствах веревки и пр. – чем меньше фактор падения, тем меньше и величина пиковой динамической нагрузки, и наоборот.

Во втором примере на рисунке 4б высота свободного падения равна длине веревки, и f=2/2=1. Нагрузка на веревку и страховочную цепь будет значительно меньше, так как на каждый метр веревки приходится энергия, равная энергии падения тела с высоты всего в один метр (2 м высоты падения х 80 кгс веса = 160 кгс м энергии падения, распределенной на 2 м веревки = 80 кгс м энергии на каждый метр веревки).

Максимально возможный фактор падения равен 2. Эта самая тяжелая степень падения при высоте, равной удвоенной длине веревки. Вероятность падения с таким фактором никогда не исключена при свободном лазании, если первый из связки сорвется в тот момент, когда веревка между двумя людьми не застрахована промежуточными крючьями. При работе в шахте возможные падения при правильно сделанной навеске имеют гораздо меньшую степень. Их фактор обычно не превышает 0.3 – 0.5. Именно это позволяет в практике спелеологии использовать более жесткую, или так называемую статическую веревку.

Время падения. Импульс силы

Для абсолютно твердого тела, которое падает на абсолютно твердую поверхность, т.е. при полном отсутствии эластичных элементов, время удара стремится к нулю, а его сила – к бесконечности. Из–за наличия эластичных элементов в страховочной цепи и, в первую очередь, веревки, для преобразования высвобождающейся при падении энергии необходимо некоторое время, а сила удара зависит, прежде всего, от динамических свойств веревки.

Произведение силы удара на время ее действия F удар t удар называется импульсом силы. В то время как пиковая динамическая нагрузка при фиксированном факторе падения не зависит от абсолютной высоты, импульс силы зависит от высоты H и нарастает с увеличением скорости падающего тела. Например, если для H1 необходимое время остановки падения есть t1, а для H2 – время t2 и H2/H1=R, то t2/t1=sqrt (R), или при H1=1 м и t1=0.2 с время t2 для остановки падения с высоты H2=9 м будет: H2/H1=R=9/1=9; t2/t1=sqrt (9)=3, или t2=0.2х3=0.6 с, или втрое больше. Следовательно, больше будет и импульс силы (рис. 5).

Рис. 5. Длительность импульса силы:

1 – импульс при падении с 1 м с фактором 1;

Часть II.

Конструкция

Конструкция современных веревок – кабельного типа. Впервые ее применила фирма "Edelrid" в 1953 г. Такая веревка имеет несущую сердцевину и защитную оплетку (рис. 7). Сердцевина состоит из нескольких десятков тысяч синтетических нитей. Они распределены в два, три или более прямых, плетеных или крученых жгута, в зависимости от конкретной конструкции и требуемых эксплуатационных характеристик. Например, сердцевина динамической веревки типа "Classic" производства "Edelrid" состоит из 50400 нитей толщиной 0.025 мм, а ее защитная оплетка из 27000 нитей.

Оплетка предохраняет веревку от механических повреждений и прямого действия ультрафиолетовых лучей, придает веревке необходимую гибкость и удобство в обращении. Она участвует и в восприятии различных нагрузок. На ее долю приходится около 40 % прочности веревки. Защитная оплетка альпинистских веревок обычно окрашена. Цвета могут быть самые разные, но всегда яркие, что создает удобство при работе с двумя и более веревками. Оплетка большинства спелеоверевок белая.

Рис. 7. Кабельная конструкция

Толщина

Диаметр динамических и статических веревок, производимых большинством специализированных фирм, лежит чаще всего в пределах от 9 до 11 мм. Конкретный диаметр веревки данного типа рассчитывается еще на стадии проектирования в зависимости от желаемых динамических и эксплуатационных характеристик. Поэтому считается, что толщина любой веревки достаточна для нагрузок и целей, предусмотренных производителем.

Запомните:

– в практической работе толщина веревки имеет отношение только к удобству обращения, общему весу, гибкости и т.п. и не является показателем надежности веревки.

Вес

Вес веревки зависит от ее толщины. Его величина, выражаемая в граммах на метр, измеряется в стандартных условиях (влажность воздуха 65 %, температура 20 градусов Цельсия) и указывается производителем в паспорте веревки. Обычно вес составляет от 52 до 77 г/м в зависимости от толщины и конструкции. Веревка, не относящаяся к типам "Drylonglife", "Everdry", "Superdry" (импрегнированная), при ее намокании в пещере впитывает много воды, которая может временно увеличить вес веревки на величину до 40 % от ее первоначального веса.

Удлинение

Кроме большой прочности при низкой плотности синтетические волокна имеют еще одно ценное свойство – способность удлиняться под нагрузкой, на которой, по сути, основаны амортизационные свойства веревки.

Не вдаваясь в подробности, при первом рассмотрении можно выделить два вида удлинения: эластичное (упругое), при котором после снятия нагрузки веревка восстанавливает свою первоначальную длину, и пластическое (неупругое), при котором приобретенное под нагрузкой удлинение сохраняется после ее снятия. При слабых нагрузках веревка поглощает энергию в основном за счет упругой деформации, а при более сильных появляются необратимые деформации.

Удлинение выражается в процентах к начальной длине веревки.

Виды веревки

Основная отличительная черта, определяющая вид данной веревки, ее динамические качества, которые в основном зависят от ее способности удлиняться под нагрузкой. Еще при конструировании веревки в зависимости от желаемых эксплуатационных свойств, ее способности к удлинению, как в процессе нормального употребления, так и при поглощении динамического удара предварительно заключается в диапазон с некоторыми границами. В соответствии со степенью удлинения под нагрузкой, а также целями, для которых она производится, веревка подразделяется на два основных вида: динамическая, или альпинистская веревка, и статическая, или спелеоверевка.

Динамическая веревка

Производится в основном для нужд альпинизма. Степень удлинения при нормальном применении составляет обычно от 4.5 до 6.5 %. Их основные качества определяются нормами Международного союза альпинистских ассоциаций (UIAA). Они регламентируют производство двух типов альпинистских веревок: основных (во многих странах они называются одиночными) и так называемых двойных, или полуверевок.

Основным называется такой тип динамической веревки, который по своей конструкции предназначен для использования для страховки при свободном лазании и обладает необходимыми качествами для надежного задержания падения с максимальным фактором 2. Толщина основной веревки чаще всего от 10.5 до 11.5 мм.

Двойной, или полуверевкой называется динамическая веревка, которая обязательно должна быть сдвоена при страховке. У одиночной веревки нет необходимых качеств для того, чтобы выдержать падение с фактором 2. Полуверевки имеют толщину 9 и 10 мм.

Испытания для оценки основных качеств динамической веревки проводятся с помощью теста "Dodero". С этой целью используют образцы веревки длиной 2.80 м. На специальном стенде производят последовательные падения груза с высоты 5 м с фактором 1.78 (рис. 9).

Рис. 9. Схема теста "Додеро"

Основную веревку испытывают с грузом 80 кг, полуверевку – 55 кг. Образцы привязываются к соответствующим элементам стенда узлом булинь, а при падении груза веревка перегибается на угол 150 градусов через карабин диаметром 10 мм. Этим имитируются условия, по вероятности похожие на те, что возникают при падении во время свободного лазания.

Важнейшие требования UIAA к качествам динамической веревки такие:

– пиковая динамическая нагрузка при задержании первого падения груза не превосходит 1200 кг для основной и 800 кг для полуверевки;

– веревка выдерживает, не порвавшись, по меньшей мере пять последовательных падений соответствующего типу веревки груза с фактором 1.78;

– удлинение при нормальном употреблении не превосходит 8% для основной и 10% для полуверевки при статическом нагружении весом 80 кг.

Предел, которого пиковая динамическая нагрузка не должна превышать даже при падении с максимальным фактором, заимствован из практического опыта парашютизма. Он доказал, что и при наиболее благоприятном стечении обстоятельств, наличии обвязок и т.д. человек может выдержать только кратковременную нагрузку, не большую 15–кратного собственного веса. Если считать, что средний вес человека равен 80 кг, то получится, что он может выдержать нагрузку максимум 80х15=1200 кг.

Максимальный предел, определенный по значению пиковой динамической нагрузки на полуверевку (800 кг), на первый взгляд выглядит более благоприятным по сравнению с принятым за норму для основной (1200 кг). В действительности это не так, так как он достигается при задержании падения груза, значительно меньшего по весу, чем используемый для испытания основной веревки. Напоминаем об этом, потому что в паспорте с техническими характеристиками альпинистской веревки обычно указывается максимальное значение пиковой динамической нагрузки, но не условия испытания веревки. Если эти подробности не знать или не уделять им должного внимания, а в паспорте данной веревки фигурирует значение пиковой динамической нагрузки, равное или меньшее 800 кг, можно впасть в заблуждение при оценке ее динамических качеств.

Запомните:

– при свободном лазании для страховки используют только динамическую веревку;

– когда при свободном лазании страховка осуществляется сдвоенной полуверевкой, обе обязательно встегиваются в два отдельных карабина, но крепятся к одному и тому же крюку. Если их встегнуть в один карабин, при динамическом ударе есть опасность, что одна прижмет и срежет другую, а если каждую прикрепить к отдельному крюку, одна может нагрузиться больше и не выдержать удара;

– при свободном лазании с двумя основными веревками для каждой из них забивают отдельный крюк. Если их встегнуть в карабин одного и того же крюка, при динамическом ударе пиковая нагрузка многократно возрастает.

Статическая веревка

Во второй половине 60–х годов в практику спелеологии вошли два новых приспособления – спусковое устройство и самохват. Их быстрое и широкое распространение всего за несколько лет полностью изменило технику прохождения вертикальных пещер. От лестниц постепенно отказались. На базе самохватов появилась такая новая техника, как "спуск и подъем по веревке со самостраховкой" и др. Но после того как веревка стала основным средством не только страховки, но и подъема в колодце, ее большая эластичность, так необходимая для страховки, сразу превратилась в ее основной недостаток. Необходимость топтаться на месте, пока не выберешь по крайней мере 5–6 метров удлинения, прежде чем спелеолог оторвется от дна большого колодца, и особенно постоянные подскоки при каждом перемещении самохвата по веревке, не из самых приятных ощущений. С другой стороны, при соприкосновении со скалой в нагруженном состоянии веревка тем больше трется, чем более эластична. Все это потребовало создания веревки с малой степенью удлинения, которая получила наименование статической. Такая веревка производится прежде всего для целей спелеологии. Ее удлинение при нормальном употреблении под нагрузкой 100 кг составляет обычно от 1.5 до 2.5%, ее толщина – от 8 до 11.5 мм.

Из–за более низкой степени удлинения ее способность поглощать энергию ниже, а пиковые динамические нагрузки значительнее. Они превышают 1000 кгс при падении груза весом 80 кг с фактором, равным всего 1, в то время как для динамической веревки это значение редко превышается даже при падении с самым высоким фактором – 2.

Техника одиночной веревки появляется и развивается на базе уже существующей статической веревки. И поэтому каждому спелеологу должно быть ясно, что все ее развитие связано с качествами и характеристиками статических веревок, а не со спецификой конструкции веревок. Поэтому от статических веревок нельзя ожидать качеств, которых нет изначально.

Производство статической веревки еще не регламентировано нормами Международного спелеологического союза (UIS), как это сделано UIAA для динамической. В настоящее время все, что касается ее технических характеристик, зависит от доброй воли конструкторов фирмы–производителя. Развитие техники одной веревки сопровождалось сотнями экспериментов, проводившихся как отдельными спелеологами, так и клубами и национальными федерациями спелеологии. Установленные недостатки статической веревки с точки зрения техники одной веревки компенсировались соответствующими правилами ее употребления и способами провески колодцев.

Как подсказывает само название, статическая веревка имеет ограниченную эластичность и, в принципе, не предназначена для амортизации больших динамических нагрузок. Статическая веревка может выдержать падение с фактором не больше 1. Это означает, что спелеолог, когда он привязан к такой веревке, должен категорически исключить вероятность ситуации, при которой он может оказаться выше точки крепления веревки. Это правило легко запомнить и при желании еще легче использовать. Совершенно недопустимо использовать статическую веревку для страховки при свободном лазании по стенам галерей и других подобных действиях. В таких случаях используют только динамическую веревку. Эти правила не допускают никаких исключений – с ними должен считаться каждый спелеолог, если хочет пережить веревку, с которой работает!

Крепление

Совокупность всех элементов, образующих опору, за которую навешивается веревка (сама опора, петля или планка, крюк, карабин и т.д.), называется креплением. Опоры бывают:

– естественные: скальный выступ или глыба, натек, ствол дерева и т.п.;

– искусственные: шлямбурный или скальный крюк, закладка, эксцентрик и т.п.

Для крепления обычно используется одна и реже – две опоры, как при V–образном креплении.

Функция, которую данное крепление выполняет, определяет его как: основное, дополнительное, промежуточное или отклоняющее (рис. 10).

Рис. 10. Виды креплений (дополнительное, основное, промежуточное, отклоняющее)

Использование самопробивающих шлямбурных крючьев типа SPIT дает возможность создания неограниченного числа искусственных опор и расположения крепления в любом месте галереи или колодца – была бы скала с ненарушенной структурой, а выбранное место – наилучшим образом подходило для устройства правильной навески.

Запомните:

– в соответствии с требованиями максимальной надежности при использовании техники одной веревки каждое основное крепление должно быть дублировано дополнительным. Отклоняющие крепления не дублируются, промежуточные – обычно не дублируются;

– взаимное расположение дублирующих креплений и способ фиксирования веревки в них должны быть такими, чтобы свести к минимуму возможные динамические нагрузки, которые могут возникнуть в случае разрушения одного из креплений;

– основные и промежуточные крепления должны располагаться так, чтобы веревка нигде не терлась о скалу.

Предел H0

Как видно из рис. 11, нагрузка на веревку не может достигнуть соответствующего данному фактору падения максимума, пока длина веревки, а следовательно, и высота падения H меньше некоторого, хотя и минимального, значения. Оно называется пределом H0 (аш нулевое), начиная с которого пиковая динамическая нагрузка достигает величины, соответствующей фактору падения.

Рис. 11. Предел Н0

Если провести эксперимент по падению груза данного веса с фактором 1 с несколькими кусками веревки разной длины, для каждого измерить пиковую динамическую нагрузку и отложить ее на графике как функцию длины, получится кривая, которая сначала стремительно взлетает вверх, потом рост ее замедляется, пока не достигнет предела H0 (рис.12).

Рис. 12. Зависимость ПДН от длины веревки при одном и том же факторе падения

После этого она превращается в прямую линию, параллельную оси абсцисс. Пиковая динамическая нагрузка становится постоянной, т.е. такой, какой должна бы быть, так как фактор падения один и тот же.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 108; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.185.170 (0.104 с.)