Составное (сложное) движение точки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Составное (сложное) движение точки



 

 

Составное движение точки - это такое движение, при котором точка одновременно участвует в двух или нескольких движениях.

Рассмотрим тело А (рис. 28), которое свободно движется по отношению к неподвижной системе координат О1 x 1 y 1 z 1. Пусть точка М совершает движение по поверхности этого тела. Через произвольную точку О движущегося тела проведем неизменно связанные с этим телом оси x, y, z. Систему осей О xyz называют подвижной системой отсчета.

Движение точки М по отношению к неподвижной системе отсчета называют абсолютным движением точки.

Абсолютное движение точки характеризуется изменением радиуса-вектора по модулю и направлению.

Скорость и ускорение точки в абсолютном движении называют абсолютной скоростью и абсолютным ускорением точки и обозначают и .

 

Рис. 28

 

Движение точки М по отношению к подвижной системе отсчета называют относительным движением точки. Относительное движение характеризуется изменением только радиуса-вектора при неизменных радиусах-векторах и . В этом случае координаты х, у, z точки М в подвижной системе отсчета будут изменяться.

Скорость и ускорение точки в относительном движении называют относительной скоростью и относительным ускорением и обозначают и .

Движение подвижной системы отсчета О xyz и неизменно связанного с ней тела А по отношению к неподвижной системе отсчета О1 x 1 y 1 z 1 является для точки М переносным движением. Переносное движение точки М характеризуется изменением радиусов-векторов и по модулю и направлению при неизменном только по модулю радиусе-векторе .

Скорость и ускорение той точки тела А, с которой в данный момент совпадает точка М, называют переносной скоростью и переносным ускорением точки М и обозначают и .

Желая изучить относительное движение точки, следует мысленно остановить переносное движение. Если необходимо изучить переносное движение точки, то надо мысленно остановить относительное движение и рассмотреть далее движение точки по формулам кинематики точки в абсолютном движении.

Если точка М участвует в составном движении, то имеют место следующие теоремы:

абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей точки, т. е.

 

= + ;

 

абсолютное ускорение точки равно геометрической сумме переносного, относительного и кориолисова (поворотного) ускорений этой точки, т. е.

 

= + + ,

или

= + + + + .

 

Кориолисово ускорение равно удвоенному векторному произведению угловой скорости переносного вращения на относительную скорость точки, т. е.

 

= 2 × ( ´ ).

 

Следовательно, модуль этого ускорения

 

= 2 × wпер × Vотн × sin a,

 

где a - угол между векторами и .

Чтобы найти направление кориолисова ускорения точки М, достаточно в точке М построить векторы и и восстановить из этой точки перпендикуляр к плоскости, в которой лежат эти векторы и . Вектор направлен по этому перпендикуляру так, чтобы наблюдатель, смотрящий с конца этого вектора, видел поворот вектора на угол a против хода часовой стрелки до совмещения его с вектором (рис. 29).

 

 

Рис. 29

Направление вектора можно определить и другим способом (правило Н. Е. Жуковского).

Проведем через точку М плоскость П, перпендикулярную к вектору и спроецируем относительную скорость на эту плоскость. Если полученную проекцию повернем в плоскости П на 90° вокруг точки М в направлении переносного вращения, то получим направление вектора .

 

 

Задача К3

 

 

Прямоугольная пластина (рис. К3.0–К3.4) или круглая пластина радиуса R = 60 см (рис. К3.5–К3.9) вращается вокруг неподвижной оси по закону j = f1 (t), заданному в табл. К3. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. К3.0, К3.1, К3.2, К3.5, К3.6 ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. К3.3, К3.4, К3.7, К3.8, К3.9 ось вращения О1О лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой ВD (рис. К3.0–К3.4) или по окружности радиуса R (рис. К3.5–К3.9) движется точка М; закон ее относительного движения, т. е. зависимость s = AM = f 2 (t) (s выражено в сантиметрах, t в секундах), задан в табл. К3 отдельно для рис. К3.0–К3.4 и для рис. К3.5–К3.9; там же даны размеры b и l. На рисунках точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Указания. Задача К3 – на сложное движение точки. Для ее решения воспользоваться теоремами о сложении скоростей и о сложении ускорений. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1 = 1 с, и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунках к задаче).

В случаях, относящихся к рис. К3.5–К3.9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t1 = 1 с и угол между радиусами СМ и СA в этот момент.

 

Таблица К3

 

  Номер условия Для всех рисунков j = f 1(t) Для рис. К3.0-К3.4 Для рис. К3.5-К3.9
  b, см   s = AM = f 2 (t)   l s = = f 2(t)
  4×(t2 - t)   50×(3×t - t2) - 64 R p×R×(4t2 - 2t3)/3
  3t2 - 8t   40×(3×t2 - t4) - 32 4R/3 p×R×(2t2 - t3)/2
  6t3 - 12t2   80×(t2 - t) + 40 R p×R×(2t2 - 1)/3
  t2 - 2t3   60×(t4 - 3t2) + 56 R p×R×(3t - t2)/6
  10t2 - 5t3   80×(2t2 - t3) - 48 R p×R×(t3 - 2t)/3
  2×(t2 - t)   60×(t3 - 2t2) R p×R×(t3 - 2t)/6
  5t - 4t2   40×(t2 - 3t) + 32 3R/4 p×R×(t3 - 2t2)/2
  15t - 3t3   60×(t - t3) + 24 R p×R×(t - 5t2)/6
  2t3 - 11t   50×(t3 - t) - 30 R p×R×(3t2 - t)/3
  6t2 - 3t3   40×(t - 2t3) - 40 4R/3 p×R×(t - 2t2)/2

 

 

 

 

Рис. К3.0 Рис. К3.1 Рис. К3.2

 

 

Рис. К3.3 Рис. К3.4 Рис. К3.5

 

Рис. К3.6 Рис. К3.7

 

 

Рис. К3.8 Рис. К3.9

 

Рассмотрим два примера решения этой задачи.

Пример К3а. Пластина OEAB1D (OE = OD, рис. К3а) вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины, по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3а дуговой стрелкой). По дуге окружности радиуса R движется точка В по закону s = = f 2(t) (положительное направление отсчета s – от A к B).

Дано: R = 0,5 м, j = t2 - 0,5t3, s = p×R×cos(pt/3) (j - в радианах, s - в метрах, t - в секундах). Определить: и в момент времени t1 = 2 с.

Решение. Рассмотрим движение точки В как сложное, считая ее движение по дуге окружности относительным, а вращение пластины – переносным движением. Тогда абсолютная скорость и абсолютное ускорение точки найдутся по формулам:

= + ,

 

= + + , (58)

где, в свою очередь,

 

= + , = + .

 

 

Рис. К3а

 

Определим все входящие в равенства (58) величины.

1. Относительное движение. Это движение происходит по закону

 

s = = p×R× cos(pt/3). (59)

 

Сначала установим, где будет находиться точка В на дуге окружности в момент времени t1. Полагая в уравнении (59) t1 = 2 с, получаем

 

s = p×R× cos(2p/3) = - 0,5pR.

 

Тогда

 

Знак минус свидетельствует о том, что точка В в момент t1 = 2 с находится справа от точки А. Изображаем ее на рис. К3а в этом положении (точка В1).

Теперь находим числовые значения , , :

 

,

 

,

где rотн – радиус кривизны относительной траектории, равный радиусу окружности R. Для момента t1 = 2 с, учитывая, что R = 0,5 м, получаем

 

м/с,

 

м/с2, м/с2. (60)

 

Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор – в противоположную сторону; вектор направлен к центру С окружности. Изображаем все эти векторы на рис. К3а.

2. Переносное движение. Это движение (вращение) происходит по закону j = t2 – 0,5×t3. Найдем сначала угловую скорость w и угловое ускорение e переносного вращения:

 

= 2×t – 1,5×t2, = 2 – 3×t;

 

и при t1 = 2 с

w = – 2 c–1, e = – 4 с–2. (61)

 

Знаки указывают, что в момент t1 = 2 с направления w и e противоположны направлению положительного отсчета угла j; отметим это на рис. К3а.

Для определения и находим сначала расстояние h 1 = OB1точки B1 от оси вращения О. Из рисунка видно, что h1 = 2R× = 1,41 м. Тогда в момент времени t1 = 2 с, учитывая равенства (61), получим

 

Vпер = |w|×h1 = 2,82 м/с,

 

= |e|×h1 = 5,64 м/с2, = w2×h1 = 5,64 м/с2. (62)

 

Изображаем на рис. К3а векторы и с учетом направлений w и e и вектор (направлен к оси вращения).

3. Кориолисово ускорение. Модуль кориолисова ускорения определяем по формуле а кор = 2× |Vотн| × |w| × sin a, где a – угол между вектором и осью вращения (вектором ). В нашем случае этот угол равен 90°, так как ось вращения перпендикулярна плоскости пластины, в которой расположен вектор . Численно в момент времени t1 = 2 с, так как в этот момент |Vотн| = 1,42 м/с и |w| = 2 с-1, получим

 

а кор = 5,68 м/с2. (63)

Направление найдем по правилу Н. Е. Жуковского: так как вектор лежит в плоскости, перпендикулярной оси вращения, то повернем его на 90° в направлении w, т. е. по ходу часовой стрелки. Изображаем на рис. К3а. (Иначе направление можно найти, учтя, что = 2×( ´ ).

Таким образом, значения всех входящих в правые части равенств (58) векторов найдены и для определения Vабс и а абс остается только сложить эти векторы. Произведем это сложение аналитически.

4. Определение Vабс. Проведем координатные оси В1ху(см. рис. К3 а) и спроектируем почленно обе части равенства = + на эти оси. Получим для момента времени t 1 = 2 с:

 

Vабс х = Vотн х + Vпер х = 0 - |Vпер| × сos 45° = - 1,99 м/с,

 

Vабс у = Vотн у + Vпер у = |Vотн| + |Vпер| × сos 45° = 3,41 м/с.

 

После этого находим

м/с.

 

Учитывая, что в данном случае угол между и равен 45°, значение Vабс можно еще определить по формуле

 

м/с.

 

5. Определение а абс. По теореме о сложении ускорений

 

= + + + + . (64)

 

Для определения спроецируем обе части равенства (64) напроведенные оси В1ху. Получим:

 

а абс х = + а кор + × cos 45° - | |× cos 45°,

 

а абс y = × cos 45° + | |× cos 45° - | |.

 

Подставив сюда значения, которые все величины имеют в момент времени t1 = 2 с, найдем, что в этот момент

 

а абс х = 9,74 м/с2; а абс y = 7,15 м/с2.

 

Тогда

 

м/с2.

 

Ответ: Vабс = 3,95 м/с, а абс = 12,08 м/с2.

Пример К3б. Треугольная пластина ADE вращается вокруг оси z по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3б дуговой стрелкой). По гипотенузе AD движется точка Впо закону s = АВ = f 2(t); положительное направление отсчета s – от А к D.

Дано: j = 0,1× t3–2,2× t, s = АВ = 2 + 15× t – 3×t2; (j – в радианах, s – в сантиметрах, t – в секундах). Определить: Vабс и а абс в момент времени t1 = 2 с.

Решение. Рассмотрим движение точки В как сложное, считая ее движение по прямой AD относительным, а вращение пластины – переносным. Тогда абсолютная скорость и абсолютное ускорение найдутся по формулам:

= + , = + + , (65)

 

где, в свою очередь, = + .

Определим все входящие в равенство (65) величины.

1. Относительное движение - это движение прямолинейное и происходит по закону

s = AB = 2 + 15t - 3t2, (66)

Поэтому

 

В момент времени t1 = 2 с имеем

 

s1 = AB1 = 20 cм, Vотн = 3 см/с, а отн = - 6 см/с2. (67)

Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор – в противоположную сторону. Изображаем эти векторы на рис. К3б.

 

 

Рис. К3б

2. Переносное движение. Это движение (вращение) происходит по закону j = 0,1×t3 - 2,2t.

Найдем угловую скорость w и угловое ускорение e переносного вращения: w = = 0,3t2 - 2,2; e = = 0,6t и при t1 = 2 с,

 

w = - 1 c-1, e = 1,2 c-2. (68)

 

Знаки указывают, что в момент t1 = 2 с направление e совпадает с направлением положительного отсчета угла j, а направление w ему противоположно; отметим это на рис. К3б соответствующими дуговыми стрелками.

Из рисунка находим расстояние h1 точки В1 от оси вращения z: h1 = AB1× sin 30° = 10 см. Тогда в момент t1 = 2 с, учитывая равенства (68), получаем:

Vпер = |w|×h1 = 10 cм/с,

 

= |e|×h1 = 12 см/с2, = w2×h1 = 10 см/с2. (69)

 

Изобразим на рис. К3б векторы и (с учетом знаков w и e)и ; направлены векторы и перпендикулярно плоскости ADE, а вектор – по линии В1С к оси вращения.

3. Кориолисово ускорение. Так как угол между вектором и осью вращения (вектором ) равен 30°, то численно в момент времени t1 =

а кор = 2×|Vотн| × |w| × sin 30° = 3 см/с2. (70)

 

Направление найдем по правилу Н. Е. Жуковского. Для этого вектор спроецируем на плоскость, перпендикулярную оси вращения (проекция направлена противоположно вектору ) и затем эту проекцию повернем на 90° в сторону w, т. е. по ходу часовой стрелки; получим направление вектора . Он направлен перпендикулярно плоскости пластины так же, как вектор (см. рис. К3б).

4. Определение Vабс. Так как = + , а векторы и взаимно перпендикулярны, то ; в момент времени t1 = 2 с Vабс = 10,44 см/с.

5. Определение а абс. По теореме о сложении ускорений

 

= + + + . (71)

 

Для определения а абс проведем координатные оси В1хуz1 и вычислим проекции на эти оси. Учтем при этом, что векторы и лежат на оси х 1, а векторы и расположены в плоскости В 1 хуz 1, т. е. в плоскости пластины. Тогда, проецируя обе части равенства (71) на оси В1хуz1 и учтя одновременно равенства (67), (69), (70), получаем для момента времени t1 = 2 с:

 

а абс х = | | – а кор = 9 см/с2,

 

 

а абс у = + | а отн|×sin 30 ° = 13 см/с2,

 

 

а абс z = | а отн|×cos 30 ° = 5,20 см/с2.

 

Отсюда находим значение а абс:

 

см/с2.

 

 

Ответ: Vабс = 10,44 см/с, а абс = 16,64 см/с2.

 

Вопросы для самоконтроля

 

 

1. Что понимается под составным (сложным) движением точки?

2. Что называется абсолютным, переносным и относительным движением точки?

3. Сформулируйте, что такое переносная скорость и переносное ускорение точки.

4. В чем заключается теорема об абсолютной скорости точки, совершающей составное движение.

5. Сформулируйте теорему об ускорениях точки в составном движении.

6. Как определить модуль и направление кориолисова ускорения точки?

7. В каких случаях ускорение Кориолиса равно нулю?



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 924; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.92.1.156 (0.157 с.)