Определение спектральной плотности для различных сигналов



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Определение спектральной плотности для различных сигналов



1. Определить спектр сигнала, указанного на графике, и построить его спектральную диаграмму.

 

 


Определяем коэффициенты ряда Фурье, учитывая, что сигнал нечетный:

 

,

.

В данном случае s ( t ) = V, тогда

.

Определяем допустимые значения s ( t ):

.

После интегрирования получим

,

,

,

Теперь записываем ряд Фурье:

Покажем полученный результат на спектральной диаграмме:

 

 

Построим график:

 

 


2. Вычисление спектра непериодического сигнала (импульса).

 

 


 

На графике показан одиночный импульс, являющийся четной функцией, так как

s (- t ) = s ( t ). Данная функция имеет два параметра:

    V – амплитуда импульса;

    - длительность импульса.

Импульс описывается следующим образом:

.

 

Вычисляем спектральную плотность по формуле

 

                            

 

.

Удобнее записать:

 


                         .

 

Функция sinc(x) примечательна тем, что для нее выполняются условия:

 

 sinc(0) = 1; sinc(nπ) = 0.

 

 


Тогда можно записать, что спектральная плотность

- это знакопеременная действительная функция.

     Изобразим спектральную плотность импульса на графике:

 

 

Как видно из графика, спектральная плотность импульса – это четная функция, имеющая лепестковую структуру.

     Изобразим амплитудный и фазовый спектры на графике:

 

 

 


Амплитудный спектр можно определить из выражения

 

.

 

Как видно из графика, амплитудный спектр – это четная функция, имеющая лепестковую структуру. Ширина лепестка равна 2π/τи=Δω. Чем шире импульс, тем уже спектр.

График фазового спектра можно объяснить следующим образом. Поскольку спектральная плотность является знакопеременной функцией, а изменение знаков функции равносильно изменению фазы на , то фазовый спектр описывается так:

.

 

3. Вычисление спектра экспоненциального импульса.

 

 

 

 


Импульс описывается формулой

.

Вычислим спектральную плотность:

.

Эта функция комплексная, определим амплитудный и частотный спектры:

.

 

Построим графики этих спектров:

 


 - площадь экспоненты.

4. Определить спектральную плотность  для следующей ситуации:

 

 

 

 


1) ,

2) .

Объединим спектры в один общий:

 ,

т.к. ,

.

 

На нулевой частоте амплитудный спектр будет равен нулю.

 

 

 

 


Литература: [1] с. 38 – 51; [2], с. 50 – 58

Практическое занятие № 2

Определение корреляционных функций для детерминированных

Сигналов

1. Определить корреляционную функцию прямоугольного импульса.

 

 

 . Для , .

 

Найти автокорреляционную функцию (АКФ).

Аналогично для  можно использовать четность

2. Определить корреляционную функцию пилообразного импульса.

 

 

Найти АКФ.

 

 

         .

3.Определить корреляционную функцию экспоненциального импульса

 

.

 

Найти АКФ.

Литература: [1] с. 73 – 79; [2], с. 79 - 84

Практическое занятие № 3



Последнее изменение этой страницы: 2021-04-05; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.28.137 (0.034 с.)