Вопрос о жизненной ассимиляции 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос о жизненной ассимиляции



 

Не случайно почти все те примеры, на которых мы в самом начале работы иллюстрировали возможность всеобщих организационных форм и законов, а следовательно, и тектологии как науки относились к области фактов схождения. Всякий комплекс заключен в своей среде одновременно и как отливочный материал, и как формовочная модель, определяясь этой средою в первом смысле и частично определяя ее во втором. И всякая повторяемость форм, а следовательно, всякая наблюдаемая закономерность основывается в конечном счете на каком-нибудь схождении.

Поэтому его схема должна в первую очередь руководить нами, когда требуется объяснить непонятную еще повторяемость фактов, загадочную закономерность. В ряду таковых одна из самых близких к нам, самых интересных — жизненная ассимиляция.

Живой организм характеризуют как машину, которая не только сама себя регулирует, но и сама себя ремонтирует. По мере того как элементы тканей организма изнашиваются, он заменяет их материалом, взятым из окружающей среды и «ассимилированным», т. е. приведенным к химическому составу этих самых тканей. «Мертвую», взятую извне материю протоплазма превращает в свою живую материю, не какую-нибудь вообще, а вполне определенную, химически тождественную с молекулами этой именно протоплазмы. Между тем из сотен тысяч видов растений и животных каждый отличается своим особым химизмом, иным составом белков, чем все прочие, и в процессе своей ассимиляции образует именно эти белки из такого же питательного материала, из какого другие виды образуют другие белки. В этом и заключается основная загадка.

Если пищей для организма служат воспринятые извне чужие белки, например, когда человек ест мясо других животных или плоды, стебли, корни растений, то организм сначала при «переваривании» разрушает эти белки, разлагает их на составные части, различные аминокислоты. Затем в тканях из аминокислот он воссоздает уже свои собственные их комбинации, свои специфические белковые вещества. Что же касается растений, то большинство из них сами образуют сначала углеводы, а затем аминокислоты из углекислоты воздуха и воды почвы с ее солями и кислотами.

Итак, почему различный материал, получаемый живой протоплазмой, отливается под ее действием в специфические формы ее собственного состава? Например, почему аминокислоты разрушенных белков нашей пищи из числа миллионов возможных комбинаций укладываются именно в те, которые свойственны белкам нашего тела? Новые материалы в различных изменяющихся пропорциях присоединяются к старому составу, почему не происходит того, что бывает при всяком прямом смешении — контрдифференциации, т. е. изменения этого состава на иной, так сказать, промежуточный между старым составом и новыми материалами?[46]

Мы уже упоминали об одноклеточном животном-хищнике, называемом ацинетой. Она присасывается к какой-нибудь инфузории и по сосательным трубочкам втягивает в себя ее плазму, которая прямо течет в плазму ацинеты и смешивается с ней. Но если бы это было простое смешение, то, очевидно, состав ацинеты был бы лишен всякой устойчивости: каждый раз она превращалась бы в нечто среднее между прежнею ацинетой и высосанной жертвой. Так же и наша пища, хотя не столь быстро, но не менее радикально изменяла бы наш состав. Чтобы этого не получилось, необходимо принять, что в нашем организме, равно как и в организме ацинеты, поступающие материалы проходят через какую-то химическую отливочную форму, откуда могут выйти только в виде специфических для данного организма соединений. Как найти эту отливочную форму?

Здесь нам придется ввести два довольно простых организационных понятия. Первое из них весьма обычно: «регулятор». Это приспособление, которое служит для того, чтобы поддерживать какой-нибудь процесс на определенном уровне. Например, при машинах часто имеется регулятор скорости хода. Если он поставлен, положим, на 1000 оборотов махового колеса в минуту, то при всяком переходе скорости через этот уровень он замедляет движение; а когда, напротив, скорость не достигает этой величины, он действует ускоряющим образом; менее совершенные регуляторы действуют только в одну сторону, например при паровом котле не допускают чрезмерного давления пара, которое могло бы взорвать его. Ясно, что регулятор есть одна из разновидностей «отливочной формы» в нашем смысле слова: при помощи его вызывается «схождение» разных фаз данного процесса на определенной величине.

Второе понятие производно от первого, но сложнее, — бирегулятор, т. е. «двойной регулятор». Это такая комбинация, в которой два комплекса взаимно регулируют друг друга. Например, в паровой машине может быть устроено так, что скорость хода и давление пара взаимно регулируют друг друга: если давление поднимается выше надлежащего уровня, то возрастает и скорость, а зависящий от нее механизм тогда уменьшает давление, и обратно. В природе бирегуляторы встречаются нередко; пример — хотя бы знакомая нам система равновесия «вода — лед» при 0 °C. Если вода нагревается выше нуля, то соприкасающийся с ней лед отнимает излишек теплоты, поглощая ее при своем таянии; если происходит охлаждение, часть воды замерзает, освобождая теплоту, которая не дает и температуре льда опуститься ниже нуля. В общественной организации бирегулятор очень распространен в виде систем «взаимного контроля» лиц или учреждений и т. п.

Бирегулятор есть такая система, для которой не нужно регулятора извне, потому что она сама себя регулирует. И очевидно, если бы живая протоплазма оказалась химическим бирегулятором, тем самым было бы объяснено, почему вступающие в нее материалы не могут изменить ее состава, а сами укладываются в его рамки.

Из белков пищи получаются их структурные элементы, аминокислоты, которые затем поступают в ткани организма. Строение этих тканей коллоидальное: жидкость с рассеянными в ней («диспергированными») более твердыми частицами. Жидкость — это вода с растворенными в ней солями, их «ионами» и другими кристаллоидными веществами, а также газами. Рассеянные частицы — молекулы белков. Каждая из них, громоздкий химический комплекс, которого атомный вес измеряется обыкновенно тысячами, представляется как бы островком в этой жидкости.

При своем очень сложном строении белковые молекулы очень не прочны: их распадение, как и образование из аминокислот, происходит весьма легко при незначительных затратах энергии или с освобождением незначительного ее количества. Очевидно, что между ними и их жидкой средой должно существовать определенное структурное соответствие, гарантирующее их прочность, — т. е. что две эти части образуют систему равновесия, как ее образуют вода и лед при 0 °C. Если такое равновесие существует для белка данного состава и строения, то для иных белков его, вообще говоря, в этой среде быть не должно, и попадая в нее, их молекулы подвергаются разложению и перегруппировкам своих элементов.

В эту же среду поступают частицы аминокислот переваренной пищи. Они находятся в растворе и, естественно, вступают между собой в соединения. Согласно взглядам современной теоретической химии при такой встрече элементов и группировок должны получаться всевозможные комбинации, лишь с различной скоростью реакции, притом с различной устойчивостью ее результатов. Непрочные сочетания тут же распадаются, устраняются отрицательным подбором; удерживаются только прочные, устойчивые. А устойчивы в данной среде, как мы уже знаем, только те, которые соответствуют составу ее наличных белковых молекул. Но это и означает, что поступившие аминокислоты «ассимилируются», группируются в такие же, а не иные белки.

С этой точки зрения понятно, почему всякая протоплазма воссоздает из всякой пищи именно свои белки, и понятно, каким образом в высокодифференцированном организме каждая из его различнейших тканей воспроизводит свои изношенные протоплазменные элементы и растет, оставаясь все той же по составу.

Но если живая белковая среда есть действительная система равновесия, в которой состав белков регулируется составом дисперсионной жидкости, то надо полагать, что и состав этой жидкости в свою очередь регулируется ими, т. е. что перед нами бирегулятор. При большой легкости распада и воссоединения белковые молекулы, действительно, должны быть способны регулировать состав жидкости; например, при убыли в ней растворенных аминокислот ниже нормального количества прямо пополнять их за счет своего распада. Так же аминокислоты могут служить для связывания каких-либо неорганических ионов при их избытке и для их освобождения при их недостатке и т. п. При этом двойственная, щелочно-кислотная природа этих элементов структуры белка как раз подходит для задачи регулирования в растворе количества ионов обоего рода — и кислотных, и металлических. Эти ионы, как и целые молекулы солей, «адсорбируются» белковыми частицами и их агрегатами, как бы растворяются в их поверхностных слоях. Когда в окружающей жидкости количество солей повышается сверх нормального, соответствующего равновесию, тогда излишек таким способом поглощается, когда, напротив, оно опускается ниже нормы, тогда часть адсорбированных ионов и молекул вновь переходит в раствор, противодействуя понижению его концентрации. Так регулируется и другая сторона системы.

С другой стороны, надо помнить, что смежные ткани организма, несомненно, образуют системы равновесия, взаимно регулирующиеся путем диффузии жидкостей и растворенных веществ.

Механизму ассимиляции белков должен быть подобен и механизм ассимиляции других коллоидов: жиров, сложных углеводов, например крахмала в растениях, и проч. Двойственное строение коллоидов вообще заключает в себе условия, подходящие для двустороннего регулирования. В высшей степени вероятно, что именно на этом основана неразрывная связь жизненных процессов с коллоидным строением вещества.

Наше построение, конечно, является гипотезой, но легко видеть, что это гипотеза «рабочая», т. е. намечающая путь исследования, путь ее практической проверки. Без предварительных построений такого типа исследование не могло идти вперед, а могло бы только топтаться на возрастающей груде фактов. Дальнейшее исследование подтверждает или опровергает такую гипотезу или приводит к ее видоизменению.

Для тектологии же всякое такое построение является решением задачи — гармонично организовать наличные данные. С прибавлением новых данных, не укладывающихся в это решение, специальная наука отвергает или переделывает его. Но для тектологии, для собирания организационного опыта и выработки организационных методов, оно и тогда может сохранять свое значение, поскольку помогает учиться решению организационных задач вообще. Так, если бы наше понимание механизма ассимиляции оказалось неверным или недостаточным, его основная мысль — идея бирегулятора, ее приложение в теоретическом исследовании, как равно и в практических построениях, не потеряла бы от этого своей тектологической пригодности. И в истории науки найдется немало давно отживших теорий и гипотез, которые, однако, могут еще служить ценным тектологическим материалом. В этом смысле тектология сохранит и сбережет для человечества много его труда, кристаллизованного в истинах прошлого. Несомненно, что и нынешние истины отживут и умрут в свое время, но тектология гарантирует нам, что даже тогда они не будут просто отброшены, не превратятся в глазах людей будущего в голые бесплодные заблуждения.

 

Глава VI



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 52; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.206.191 (0.009 с.)