ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ



ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

Раздражимость и возбудимость живых систем

Животное электричество». Опыты Гальвани и Матеучи

Мембранный потенциал покоя. Метод регистрации, механизмы происхождения и поддержания

Потенциал действия. Электрографические, электрохимические и функциональные проявления.

Электрографические проявления ПД

Электрохимические проявления ПД

Закон «все или ничего»

Функциональные проявления ПД

Парабиоз. Оптимум и пессимум раздражения

НЕРВНОЕ ВОЛОКНО

Понятие и классификация нервных волокон

Свойства нервных волокон

Механизмы проведения возбуждения

СИНАПС

Классификация синапсов

Этапы и механизмы синаптической передачи в химических синапсах

Свойства синапсов

СЕНСОРНЫЕ РЕЦЕПТОРЫ

Виды и свойства рецепторов

Кодирование свойств раздражителей в рецепторах

Понятие о рецептивном поле и рефлексогенных зонах

ЖЕЛЕЗА

Виды желез

Секреторный цикл

МЫШЦА

Виды и основные функции мышц

Скелетные мышцы

Иннервация скелетных мышц

Классификация двигательных единиц

Строение скелетной мышцы.

Механизм сокращения мышечного волокна.

Механика мышцы. Физические свойства и режимы мышечных сокращений

Энергетика мышцы. Системы восстановления АТФ, коэффициент полезного действия и тепловой выход мышцы

Гладкие мышцы .

Расположение и строение гладких мышц.

Функциональные особенности гладких мышц

Кардиомиоциты позвоночных

 
1. ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

Раздражимость и возбудимость живых систем

 

Биологические системы – организмы, органы, ткани и клетки – могут находиться в двух состояниях – покоя и активности.

Состояние покоя биосистемы можно наблюдать при отсутствии специальных раздражающих воздействий. Оно характеризуется относительным постоянством физиологических параметров и отсутствием проявлений специфических функций.

При изменениях внешней или внутренней среды (т.е. при воздействии раздражителей) биосистема может переходить в активное состояние. Способность всех живых систем реагировать на раздражители изменением своих свойств (обмен веществ и др.) называют раздражимостью. При этом раздражимость живых систем принципиально отличается от пассивной реактивности неживых тел (например, «реактивности» упругого мяча), поскольку энергия (сила) и форма ответных изменений не определяется энергией и формой воздействия.

Активное состояние некоторых тканей и клеток может сопровождаться не только изменением их свойств, но и проявлением специфической функции – реакцией. Реакция – изменение (усиление или ослабление) деятельности живой системы в ответ на раздражение. Реакции могут быть простые (генерация нервного импульса, сокращение, секреция) или сложные (пищедобывание).

Способность биосистемы отвечать на раздражение активной специфической реакцией называется возбудимостью. Клетки, способные к возбуждению называют возбудимыми. К ним относят нервные, мышечные, железистые клетки, а также элементы сенсорных рецепторов.

Переход системы в активное состояние может быть как с положительным, так и с отрицательным знаком. В первом случае это увеличение уровня метаболизма, роста, повышение возбудимости по отношению к раздражителям. Это процессы возбуждения. Противоположные реакции – реакции торможения. Возбуждение и торможение представляют собой взаимопротивоположные и взаимосвязанные процессы.

 

Классификация раздражителей

1. По биологической значимости на адекватные и неадекватные. Адекватным считается такой раздражитель, к восприятию которого данная биосистема специально приспособилась в процессе эволюции. Так, для органа зрения адекватна видимая часть спектра электромагнитных волн (свет), для органа слуха – звук определенной частоты и т.д. К неадекватным относят раздражители, не являющиеся в естественных условиях средством возбуждения данной биосистемы, но, тем не менее, способные при достаточной силе вызвать возбуждение (например, удар по глазному яблоку вызывает ощущение света).

2. По качественному признаку выделяют физические (температурные, звуковые, световые, электрические, механические и др.) и химические раздражители.

3. По количественному признаку все раздражители в зависимости от их энергии (силы) подразделяют на подпороговые (1-2), пороговые (2), сверхпороговые (2-3), максимальные (3) и сверхмаксимальные (3-4).

Минимальная сила раздражителя, необходимая для возникновения минимального по величине возбуждения, называется порогом возбуждения. Раздражители, сила которых ниже порога возбуждения, рассматриваются как подпороговые, они не вызывают ответной реакции. Если сила раздражения превосходит порог возбуждения, величина ответной реакции биосистемы возрастает вплоть до определенного предела. Дальнейшее увеличение силы раздражителя уже не ведет к росту ответной реакции. Раздражители минимальной силы, вызывающие наибольший (максимальный) ответ, называют максимальными. Раздражители, сила которых незначительно меньше или больше максимальной, называют, соответственно, субмаксимальными и супермаксимальными.

Электрохимический градиент

Электрохимический градиент - это движущая сила потока частиц, которая является комбинацией электрического градиента и химического градиента. Электрический градиент характеризует движение только ионов и направлен в сторону их противоположного заряда. Химический градиент направлен из области высокой концентрации растворенного вещества в область низкой.

Перенос веществ через мембрану может происходить пассивно и активно. Активный транспорт требует затрат энергии, а пассивный осуществляется без затрат энергии. Активный транспорт всегда идет против электрохимического градиента. Пассивный транспорт растворенных веществ может происходить только по благоприятному электрохимическому градиенту.

Системы транспорта растворенных веществ можно классифицировать на основе использования клеточной энергии.

1. Пассивный транспорт не требует затрат энергии.

Диффузия жирорастворимых веществ (например, О2, СО2, спиртов и эфиров) может произойти непосредственно через плазматическую мембрану.

Транспорт ионов и небольших молекул чаще происходит через трансмембранные белки, которые служат ионными каналами (для различных ионов) или аквапорами (для молекул воды).

Ионные каналы имеют следующие общие компоненты:

1) область поры, через которые ионы диффундируют.

2) избирательный фильтр внутри поры, в результате чего канал весьма избирателен для определенных ионов (например, Na+ каналов).

3) ворота канала, которые открывают и закрывают канал.В закрытом состоянии, ионы не проходят через канал, но канал доступен для активации. В открытом состоянии ионы движутся согласно их электрохимического градиента. Ворота канала могут управляться одним из следующих механизмов: мембранные напряжения (потенциалзависимые каналы); химических веществ (хемозависимые каналы); механические силы в мембране (стрейчзависимые каналы).

• Диффузия может происходить и через белки-переносчики, называемых унипорт, которые избирательно связываются одно растворенное вещество с одной стороны мембраны и претерпевают конформационные изменения, чтобы доставить его на другую сторону. Транспорт растворенных веществ через унипорт называется облегченной диффузией, потому что это быстрее, чем простая диффузия. Так переносятся глюкоза и аминокислоты.

• Осмос - это движение (диффузия) воды через аквапоры мембраны, которое приводится в действие градиентом концентрации ВОДЫ. Концентрация воды выражается в терминах общей концентрации растворенного вещества; чем более разбавлен раствор, тем ниже концентрации его растворенного вещества и концентрация воды выше.Когда два раствора, разделенных полупроницаемой мембраной (которая допускает транспорт воды, но не растворенных вещества), вода движется от более разбавленного раствора к более концентрированному. Осмолярность является выражением осмотической силы раствора. Два раствора одной и того же осмолярности называются изоосмотическими (изотоническими). Раствор, изотоничный межклеточной жидкости, называют физиологическим раствором. Растворы с большей, чем осмолярность раствора сравнения называется гиперосмотическими, а растворы с более низкой осмолярностью называются как гипоосмотическими. Изотонический раствор имеет такую же осмолярность, как и функционирующие клетки и не вызывает движение чистой воды через их мембрану; гипотонический раствор имеет меньшую осмолярность, чем функционирующая клетка и заставляет клетки набухать, гипертонический раствор имеет большую осмолярность, чем клетки и заставляет клетки сжиматься. Например, если пациенту внутривенно вводят гипотонический раствор, тонус внеклеточной жидкости изначально уменьшается, и вода движется во внутриклеточную жидкость путем осмоса (клетки набухают). И наоборот, есливводят гипертонический раствор, тонус внеклеточной жидкости повышен, и вода выходит из внутриклеточной жидкости (клетки сморщиваются).

Закон «все или ничего»

Важным свойством электрических сигналов является то, что они фактически идентичны во всех нервных клетках организма независимо от того, запускают ли они движение, передают ли информацию о цветах, формах или болевых стимулах, или соединяют различные области мозга. Вторым важным свойством сигналов является то, что они настолько одинаковы у разных животных, что даже умудренный опытом исследователь не способен точно отличить запись потенциала действия от нервного волокна кита, мыши, обезьяны или профессора. В этом смысле потенциалы действия могут считаться стереотипными единицами. Хотя, утверждение, что все потенциалы действия одинаковы, равносильно утверждению, что все дубы одинаковы. Таким образом, форма и длительность потенциала действия имеют постоянную величину, т.к. он возникает по ионному механизму. При этом изменения сигналов различного характера кодируются лишь изменениями частоты ПД или количеством ПД, но не формой самого ПД. Закон «все или ничего» можно сформулировать следующим образом: ПД либо не возникает вообще (при подпороговых значениях раздражающего тока возбуждение носит локальный характер и не распространяется за пределы зоны воздействия), либо имеет постоянные характеристики (при пороговых и надпороговых раздражениях).

 

НЕРВНОЕ ВОЛОКНО

Свойства нервных волокон

 

Все нервные волокна характеризуются общими, присущими другим возбудимым тканям, свойствами – порогом возбуждения, лабильностью, циклическими изменениями возбудимости, подчиняются закону «сила-длительность», способны к аккомодации. Вместе с тем, нервным волокнам присущ ряд специфических особенностей:

1. Возбуждение может распространяться в обе стороны от места нанесения раздражения. В естественных условиях возбуждение всегда распространяется ортодромно – от тела нервной клетки, что обусловлено свойствами синапсов. В эксперименте (при искусственной стимуляции участка нервного волокна) возбуждение может направиться антидромно – в направлении, противоположном естественному.

2. Скорость проведения возбуждения прямо пропорциональна диаметру нервного волокна.

3. Нервные волокна практически неутомляемы. Утомление - снижение работоспособности в ходе работы.

4. Из всех возбудимых образований нервные волокна обладают самой высокой функциональной лабильностью. Лабильность - это максимальное количество ПД, которое структура может генерировать в единицу времени без трансформации формы ответа. Нервное волокно способно воспроизвести до 1000 импульсов в секунду.

СИНАПС

В пределах одной клетки возбуждение передается по ее мембране в виде ПД. Но плазматические мембраны большинства прилежащих друг к другу клеток не сливаются и их внутренние пространства напрямую между собой не сообщаются, следовательно ПД не может преодолеть этот разрыв автоматически. Для межклеточной передачи необходимы специальные механизмы. Специализированным структурно-функциональным образованием, обеспечивающим контакт между возбудимыми клетками в виде передачи возбуждения с сохранением его информационной значимости, является синапс. Термин "синапс" введен Ч. Шеррингтоном и означает "сведение", "соединение", "застежка".

Классификация синапсов

1. По морфологическому принципу.

1) аксо-аксональные;

2) аксодендрические;

3) аксосоматические;

4) дендродендрические;

5) нервно-мышечные (между аксоном мотонейрона и исчерченным мышечным волокном);

6) аксоэпителиальные (между секреторным нервным волокном и секреторной клеткой);

7) рецепторнонейрональные.

2. По способу передачи возбуждения различают электрические и химические синапсы.

Электрические синапсы в ЦНС млекопитающих редки (синапсы сетчатки глаза и некоторые другие); они имеют строение щелевых соединений, в которых мембраны синаптически связанных между собой клеток (пре- и постсинаптическая) разделены промежутком шириной 2 нм, пронизанным коннексонами. Последние представляют собой трубочки, образованные белковыми молекулами и служащие водными каналами, через которые мелкие молекулы и ионы могут транспортироваться из одной клетки в другую. Таким образом, электрическое возбуждение, распространяющееся по мембране одной клетки, достигает области щелевого соединения и пассивно протекает к другой клетке.

Химические синапсы– наиболее распространенный тип у млекопитающих. Пресинаптическое окончание нейрона на подходе к эффекторной клетке теряет миелиновую оболочку и на конце образует небольшое утолщение - синаптическую бляшку, которая содержит синаптические пузырьки с медиатором – веществом, обеспечивающим передачу возбуждения последовательно с пресинаптической мембраны через синаптическую щель на постсинаптическую мембрану. В синаптической бляшке также расположены митохондрии и элементы эндоплазматической сети, играющие важную роль в процессе синаптической передачи. По сравнению с электрическими синапсами они отличаются меньшей скоростью передачи сигнала, меньшей лабильностью, низкой надежностью и отсутствием возможности двусторонней передачи возбуждения, однако они более управляемы, т.к. обладают свойством специфичности.

Особой разновидностью химических синапсов являются эфферентные (эффекторные) окончания. Онипередают сигналы от нервной системы на исполнительные органы (мышцы, железы) и в зависимости от природы иннервируемого органа подразделяются на двигательные и секреторные. Двигательные окончания имеются в поперечнополосатых и гладких мышцах, секреторные – в железах. По строению и функциям принципиально не отличаются от химических синапсов.

Рассмотрим это на примере нервно-мышечного окончания (моторной бляшки). Двигательное окончание аксона мотонейрона на волокнах скелетной мышцы состоит из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. Медиатором в таких синапсах является ацетилхолин.

3. Нейрохимическая классификация (по виду медиатора) выделяет адренергические (адреналин, норадреналин), холинергические (ацетилхолин), ГАМК-эргические (ГАМК), глицинергические и т.д.

4. По конечному физиологическому эффекту.

1) возбуждающие – в результате деполяризации постсинаптической мембраны генерируется возбуждающий постсинаптический потенциал;

2) тормозные, где возможно два процесса

а) постсинаптическое торможение, когда в пресинаптических окончаниях выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий в ней вызывающий таким образом снижение возбудимости;

б) пресинаптическое торможение возникаетза счет аксо-аксональных тормозящих синапсов, которые гиперполяризуют пресинаптическую мембрану и тем самым уменьшают ее возбудимость, а значит, и количество выделившегося медиатора.

Свойства синапсов

1. Пластичность — это возможность изменять строение и функции. Она необходима для реализации феномена памяти и обучения. Проявляется в:

1) неравномерности созревания синапсов (сначала в наиболее функционально значимых отделах НС);

2) зависимости числа синапсов (до 10 000 на 1 нейроне) от индивидуальных особенностей организма (хода развития, обучения);

3) зависимости числа синапсов от функционального состояния (резко уменьшается в период функционального покоя, например при зимней спячке, бездействии).

2. Одностороннее проведение возбуждения – обусловлено особенностями строения.

3. Синаптическая задержка, т.е. время между приходом импульса в пресинаптическое окончание и началом возбуждение на постсинаптической мембране (0,5-3 мс), затрачивается на реализацию механизмов синаптической передачи (см. выше).

4. Низкая лабильность. Лабильность – максимальное количество импульсов, которое структура может формировать в единицу времени. Низкая лабильность обусловлена наличием периода абсолютной рефрактерности.

5. Утомляемость – снижение или потеря работоспособности при длительной работе. Связана с истощением запасов медиатора.

6. Способность трансформировать возбуждениеоснована на таких свойствах, как низкая лабильность, суммация возбуждения и утомляемость.

7. Высокая чувствительностьк некоторым химическим веществамобусловлена специфичностью хеморецепторов постсинаптической мембраны.

8. Суммация возбуждения определяется переходом серии местных (подпороговых) возбуждений в распространяющееся (сверхпороговое). Различают временную и пространственную суммацию. При увеличении частоты афферентных сигналов в единицу времени амплитуда постсинаптического потениала нарастает до критического уровня из-за повышения эффективности синаптического проведения, что вызывает возбуждение постсинаптической мембраны в ответ на слабые, но частые раздражения. Это временная суммация. Пространственная суммация – возникает в случае, когда на одном нейроне контактируют несколько синапсов, по которым приходят импульсы, не способные вызвать возбуждение по отдельности, но при условии одновременного прихода формирующие ПД.

СЕНСОРНЫЕ РЕЦЕПТОРЫ

Виды и свойства рецепторов

Рецептор - периферическая специализиро­ванная часть анализатора, посредством которой воздействие раздражителей внешнего мира и внутренней среды организма трансформируется в процесс нервного возбуждения. Анализатором (по И.П.Павлову, или сенсорной системой) называют часть нервной системы, состоящую из воспринимающих элементов - рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию.

Впрактическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают: зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, баро-, термо-, проприо-, вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли (ноцицепторы). При этом большинство рецепторов специализированы на одном виде раздражителя (на одной модальности), но есть и полимодальные. Например, ноцицепторы формируют болевое ощущение при любом механическом, химическом или температурном повреждающем воздействии.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы).

Экстерорецепторы - рецепторы, воспринимающие раздражение из окружающей среды. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные.

Интерорецепторы - рецепторы, воспринимающие раздражения из внутренней среды организма. К интерорецепторам относятся: вестибулорецепторы, проприорецепторы (рецепторы опорно-двигательного аппарата), атакже висцерорецепторы (сигнализирующие о состоянии внутренних органов и расположенные в стенках сосудов, внутренних органах, мышцах, суставах, костях скелета и пр.).

По характеру контакта со средой рецепторы делятся на: дистантные рецепторы - рецепторы, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые) и контактные рецепто­ры - рецепторы, возбуждающиеся при непосредственном соприкосновении с раздражителем (обонятельные, вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на:

механорецепторы - рецепторы, воспринимающие механические раздражения. К ним относятся тактильные рецепторы кожи и слизистых оболочек;

барорецепторы - рецепторы, расположенные в стенках кровеносных сосудов и реагирующие на изменение кровяного давления;

фонорецепторы - рецепторы, воспринимающие звуковые раздражения;

ноцицептивные рецепторы - болевые рецепторы;

отолитовые рецепторы - рецепторы обеспечивающие восприятие гравитации и изменения положения тела в пространстве; 

хеморецепторы - рецепторы, реагирующие на воздействие каких-либо химических веществ;

осморецепторы - рецепторы, воспринимающие изменения осмотического давления;

терморецепторы - рецепторы, воспринимающие изменения температуры как внутри организма, так и окружающей его среды;

фоторецепторы - рецепторы, расположенные в сетчатке глаза и воспринимающие световые раздражители;

проприорецепторы - рецепторы, расположенные в скелетных мышцах и сухожилиях и сигнализирующие о тонусе мышц.

По механизму формирования рецепторного сигнала все рецепторы делятся также на первично- и вторично-чувствующие.

Процесс преобразование энергии внешнего раздражения в рецепторный сигнал включает в себя три основные этапа:

а) взаимодействие стимула, то есть молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

б) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки;

в) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).

В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия - электрические нервные импульсы.

Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор, воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом. В первично-чувствующих рецепторах рецепторный и генераторный потенциалы - одно и то же.                                                      

ЖЕЛЕЗА

Виды желез

 

Железа представляет собой орган, паренхима которого сформирована из высокодифференцированных железистых клеток (гландулоцитов), основная функция которых – секреция.

Секреция – процесс образования в клетке и последующего выделения специфического продукта (секрета).

Функции секреции:

· образование и выделение пищеварительных соков, молока, слезной жидкости, пота;

· образование и выделение гормонов;

· образование и выделение биологически активных веществ нервными клетками (нейросекреция).

В зависимости от типа секреции, железы подраз­деляются на экзокринные, эндокринные и смешанные.

Экзокринная железасостоит из секреторного отдела – экзокриноцитов, вырабатывающих различные секреты, и протоков выводящих эти секреты (например, потовые, сальные железы, железы кишечника и воздухоносных путей).

Эндокрин­ная железане имеет выводных протоков и выделяют синтези­руемые ими продукты (гормоны) через базальный полюс непосредственно в межклеточные простран­ства, откуда они поступают в кровь и лимфу. Имеют различное строение и уровень организации – от одноклеточных (элементы APUD-системы) до сравнительно крупных органных образований (щитовидная железа).

Смешанные железысостоят из экзо- и эндокринных отделов, присутствующих в одном органе, например поджелудочная железа.

Секреторный цикл

Секреторный циклсложный процесс синтеза и выделения секретируемого продукта. В нем выделяют несколько фаз. В первую фазу в клетку поступают необходимые для синтеза вещества. В базальных частях клеток хорошо видны много­численные пузырьки. Во вторую фазу проис­ходит синтез веществ, которые с помощью транспортных пузырь­ков перемещаются к комплексу Гольджи и сливаются с ним. В третью фазу секрет выделяется из клетки.

В эндокринных клетках секрет выделяется путем диффузии в кровеносные капилляры, которые, как правило, создают вокруг железы густую сеть. Кроме того, возможны еще три способа выделения секрета (более характерны для экзокринных желез). Мерокриновый, при котором секреторные продукты выделяются путем экзоцитоза. Этот процесс наблюдается в белко­вых железах – в пищеварительных и дыхательных путях, а также в некоторых эндокринных железах. В этом случае структура клеток не нарушается. Апокриновый тип (лактоциты, клетки потовых желез) сопровождается разрушением апи­кальной части клетки (макроапокриновый тип) либо верхушек микроворсинок (микроапокриновый тип). При голокриновом типе секреции гландулоциты полностью разрушаются и их протоплазма входит в состав секрета (например, клетки сальных желез).

МЫШЦА

Скелетные мышцы

Иннервация скелетных мышц

 

Иннервация скелетных мышц осуществляется α- мотонейронами спинного мозга или передних отделов ствола головного мозга. Аксон мотонейрона проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка контактирует на одном мышечном волокне, образуя нервно-мышечный холинергический синапс. Результатом выброса его медиатора (ацетилхолина) является возникновение электрического потенциала концевой пластинки, способного перерастать в ПД мышечного волокна.

Комплекс, включающий один мотонейрон и иннервируемые ими мышечные волокна, сокращающиеся одновременно, называют двигательной единицей (ДЕ).

У человека двигательные единицы включают от 13-20 волокон (в мышцах кисти, глаза) до 1500-2500 волокон (икроножные мышцы, мышцы спины). В свою очередь, несколько мотонейронов, иннервирующих одну и ту же мышцу, образуют мотонейронный пул. В его состав могут входить мотонейроны нескольких соседних сегметов. В связи с тем, что возбудимость мотонейронов одного пула неодинакова, при слабых раздражениях возбуждается только часть из них. Это влечет за собой сокращение лишь части мышечных волокон (неполное сокращение мышцы). С усилением раздражения в реакцию вовлекаются все большее количество двигательных единиц и в итоге все мышечные волокна мышцы сокращаются (максимальное сокращение).

 

Строение скелетной мышцы

 

Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.

Мембраны мышечного волокна сходна по строению с нервной, но она дает регулярные Т-образные впячивания. Внутри мышечного волокна параллельно мембране располагается разветвленная замкнутая система трубочек – саркоплазматический ретикулум – внутриклеточное депо Ca 2+ . Т-система и прилегающий к ней СР – аппарат передачи возбуждения с мембраны мышечного волокна на сократительные структуры (миофибриллы). В саркоплазме мышечного волокна можно увидеть поперечные чередующиеся светлые и темные участки – соответственно, J- (изотропные) и А-(анизотропные) диски. В соседних миофибриллах одноименные диски расположены на одном уровне, что придает волокну поперечную исчерченность. Комплекс из одного темного и двух прилежащих к нему половин светлых дисков, ограниченных поперечными Z-пластинками, называют саркомером.

Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.

Режимы мышечных сокращений

Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

 

Системы восстановления АТФ

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система, где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2) система окислительного фосфорилирования разворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система, где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

 

Тепловой выход мышцы

Тепловой выход мышцы ( Q ) сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называют теплотой активации. Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту  — теплоту укорочения, пропорциональную механической работе (эффект Фенна). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование. После сокращения (одиночного или краткого тетануса) в мышце возникает задержанное теплообразование, которое связано с процессами, обеспечивающими ресинтез АТ



Последнее изменение этой страницы: 2021-04-04; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.172.223.30 (0.034 с.)