Современная тектоническая структура и вулкано-тектоническое районирование 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Современная тектоническая структура и вулкано-тектоническое районирование



Рассмотренные выше разновозрастные вулканические дуги определяют жесткую раму современной тектонической структуры Курило-Камчатской островодужной системы, которая сформировалась в результате длительного взаимодействия крупных литосферных плит: Кула, Тихоокеанской, Евразиатской и Североамериканской. Жесткость системы определяется тем, что после причленения более молодой дуги к более древней относительные движения между ними практически прекратились. Осадочные прогибы, разделяющие эти дуги, были либо преддуговыми, либо задуговыми бассейнами. Фундаментом вулканогенных и вулканогенно-осадочных формаций служат вещественно-структурные комплексы разного состава, разного возраста и разного генезиса, представляющие собой аккреционно-коллизионные области, состоящие обычно из нескольких террейнов [33,40]. Так, фундаментом современной вулканической дуги Восточной Камчатки служат верхнемеловые-нижнепалеогеновые вулканогенно-осадочные структурно-вещественные комплексы в аллохтонном залегании [33], которые, по мнению ряда исследователей [28,48-50], сформировались в островодужных условиях в сопряженных структурах: задуговой бассейн - островная дуга - преддуговой бассейн. На наш взгляд, это могли быть и формационные комплексы внутриокеанических цепей вулканов, аналогичных Гавайско-Императорской цепи, которые по петрогеохимическим характеристикам вулканических пород трудно отличить от островодужных, тем более при значительных вторичных изменениях. Во всяком случае, внутриокеанические цепи вулканов типа "горячих точек" более обычны для Тихого океана, чем внутриокеанические островные дуги. Единственным надежным критерием является Ta-Nb - минимум на спайдерграммах гигромагматофильных редких элементов в лавах островных дуг [12,74]. Общая структура толщ, слагающих эти аллохотные комплексы, покровно-чешуйчатая [33].  

Террейны Восточных полуостровов Камчатки сложены меловыми и палеогеновыми вулканогенно-осадочными образованиями, среди которых выделяются как островодужные, так и океанические комплексы [10,33,45-47 и др.]. Причленение их к Камчатке в конце миоцена, вероятно, явилось причиной перескока зоны субдукции на современное положение. В настоящее время они представляют собой фронтальную (тектоническую) дугу, которая отделяется от аккреционно-коллизионной области Восточной Камчатки "надвигом Гречишкина" [9,41]. Хавывинский террейн, слагающий одноименные возвышенность и погребенное под Центральной Камчатской депрессией поднятие, как было сказано выше, очевидно представляет собой фронтальную (тектоническую) дугу в островодужной системе Срединного хребта и причленился до начала ее формирования в позднем олигоцене.

Метаморфические и метаморфизованные комплексы Срединного и Ганальского хребтов также являются террейнами и служат фундаментом для верхнеолигоцен-миоценовой системы дуг Срединного хребта и Южной Камчатки. Подробная характеристика аккреционно-коллизионной структуры Камчатки дана в специальных работах [9,28, 45,48-50 и др.] и отражена на Тектонической карте Охотоморского региона [33,40].

В соответствии с тектонической историей и геодинамическими параметрами проявления современного вулканизма над зоной субдукции Тихоокеанской плиты под Евразиатскую (Табл.1) выделяются следующие районы (сегменты) Курило-Камчатской островодужной системы (см. рис.5).

Восточно-Камчатский сегмент представляет собой начальный этап (5-7 млн лет) развития прямой субдукции. В пределах этого сегмента выделяются участок поддвигания литосферной плиты с нормальной корой океанического типа и углом падения зоны субдукции около 45o и участок поддвигания с утолщенной океанической корой за счет поднятия Обручева, где угол зоны субдукции уменьшается до 30o и, соответственно, изгибается сейсмофокальная зона. Кроме того, зона сочленения с Алеутской дугой представляет собой участок со специфическим режимом, где возможно вспарывание и раздвигание субдуцируемой Тихоокеанской плиты с внедрением горячего материала астеносферы [70].  

В пределах Южно-Камчатского сегмента примерно за 25 млн лет (конец олигоцена) сформировался практически стационарный режим субдукции почти под прямым углом. Здесь также выделяется аномальный участок в зоне сочленения с вулканической дугой Срединного хребта, маркируемый Малко-Петропавловской зоной поперечных дислокаций.

Курильский сегмент, так же, как и Южная Камчатка, характеризуется стационарным режимом субдукции. В его пределах выделяются Северные, Средние и Южные Курилы с различными геодинамическими параметрами зоны субдукции и связанного с ней вулканизма [2,36]. С севера на юг субдукция из почти прямой (85o) переходит в косую (45o), а угол падения зоны поддвига является максимальным в Центральных Курилах (60o), уменьшаясь на севере, в районе Парамушира до 50o и на юге, в районе Симушира - до 38o.  

Вулканическая дуга Срединного хребта является примером завершения субдукции после перескока ее на современное положение и, соответственно, завершения этапа надсубдукционного вулканизма. Возможны два сценария завершения этого этапа: 1 - постепенное прекращение движения субдуцируемой океанической плиты, и тогда эта плита может быть зафиксирована методом сейсмической томографии как зона повышенных скоростей, и 2 - отрыв и опускание в мантию более тяжелой океанической плиты и внедрение более горячей подсубдукционной части мантии в более высокие горизонты. Развитие по второму сценарию может быть причиной проявления вулканизма внутриплитового геохимического типа, сопряженного с островодужным вулканизмом.

Модель магмообразования под Курильской островной дугой

На основе детального изучения наземного и подводного вулканизма Курильской островной дуги [1,2,11,35-37,44 и др.] с привлечением экспериментальных данных по плавлению перидотита и базальта при различных Р-Т-условиях [30,42,69], по устойчивости водосодержащих минералов [55,64,77,84 и др.], а также модельных расчетов структуры температур в зоне субдукции [52,59-61,86-88] нами разработана модель магмообразования под Курильской островной дугой [2,3,53], применимая для стационарных режимов большинства островных дуг. Коротко остановимся на основных параметрах проявления вулканизма, которые легли в основу этой модели.

Характер изменения интенсивности вулканической активности вкрест ОД является важным параметром, позволяющим судить о местоположении зон магмообразования. Ранее многими исследователями вслед за А.Сугимурой и др. [68,81] принималось, что объем четвертичных вулканитов убывает по экспоненте от фронта ОД к их тыловым частям. Нами же выявлен бимодальный характер площадной плотности вулканов и, соответственно, объемов извергаемых пород вкрест Курильской ОД с выделением фронтальной и тыловой зон. Аналогичный характер распределения вулканов установлен в последнее время для ряда других островных дуг и активных континентальных окраин [83].

Поперечная петрогеохимическая зональность, впервые выявленная Х.Куно [66], типична для абсолютного большинства ОД, в том числе и для вулканических дуг Курило-Камчатской системы. Принципиальной и существенно новой чертой, выявленной для Курильской ОД, является то, что переход от фронта к тыловой зоне по некоторым параметрам не постепеный, а резкий. Это является ключевым моментом, позволяющим говорить о двух зонах генерации магмы [3,36,53].  

Распределение температур в зоне субдукции и вышележащем мантийном клине оказывает решающее влияние на положение областей частичного плавления под островной дугой. Термальная структура зависит от многочисленных факторов, в частности, от скорости и угла наклона зоны субдукции, ее зрелости, возраста поддвигаемой плиты, интенсивности процесса наведенной конвекции, гидратации и дегидратации водосодержащих минералов и др., и для ее расчета были предложены различные цифровые модели [52,59-61,86,87 и др.]. Следует отметить принципиальное сходство термальных структур, предложенных разными авторами, хотя и имеются различия в оценках абсолютных температур из-за сложности учета разных факторов, влияющих на температуру. Одним из таких факторов является тепло трения, однако его влияние не столь велико, как считали некоторые исследователи [72], и его учет дает повышение температуры зоны субдукции не более, чем на 50оС [77].

Рис. 7

 Для оценки процессов гидратации, дегидратации и магмообразования под Курильской ОД в качестве рабочей нами выбрана температурная модель [60], так как расчеты по ней выполнены для конкретных дуг, в том числе и для Курильской. На рис. 7 дана структура поля температур вкрест Курильской ОД, вытекающие из этой модели РТ-условия возможных областей магмообразования под фронтальной и тыловой зонами (Рис. 7а) и положение кривых устойчивости водосодержащих минералов в зоне субдукции (Рис. 7б). Геотермы подошвы и кровли океанической коры в поддвигаемой пластине нигде не пересекаются с линией "мокрого" солидуса базальта и эклогита, т.е. плавление верхней части поддвигаемой плиты по рассмотренной температурной модели не происходит. Плавление кровли поддвигаемой пластины, т.е. верхней части океанической коры, может начаться лишь при увеличении ее температуры на 80 - 100oС (см. рис.7б). Плавление же перидотита мантийного клина как под фронтальной, так и под тыловой зонами возможно в довольно широкой области, как при избытке Н2О, так и при разных ее соотношениях с СО2 (см. рис.7а).  

Основным источником воды на глубинах магмообразования является дегидратация водосодержащих минералов из субдуцированной океанической плиты, т.к. поровая вода сбрасывается на глубинах <40 км. Формирующийся за счет этого СН42О-флюид не достигает мантийного клина, а поступает в аккреционную призму [77]. Поступление водного флюида в вероятную область магмообразования мантийного клина возможно двумя путями: за счет дегидратации водосодержащих минералов поддвигаемой плиты и последующей миграции флюида вверх, непосредственно в зону магмообразования в мантийном клине, либо многостадийным путем в результате дегидратации поддвигаемой плиты на более высоких уровнях, сопровождаемой гидратацией и последующей дегидратацией вовлекаемого вместе с поддвигаемой плитой основания мантийного клина. Второй путь предложен [82] в связи с тем, что поддвигаемая плита под зоной магмообразования является сухой, т.к. дегидратация ее происходит на более высоких уровнях.

Рассмотрим вероятность этих процессов для Курильской ОД, исходя из температурной модели [60]. На рис.7б показано положение кривых устойчивости водосодержащих минералов при данной структуре температур. Отчетливо видно, что большинство водосодержащих минералов (амфибол в базальте, амфибол в перидотите, 7 -клинохлор, 14 -клинохлор в ассоциации с мусковитом, тремолит) дегидратируются непосредственно под фронтальной вулканической зоной. Кривые устойчивости серпентина и талька в ассоциации с форстеритом пересекают слой 3В океанической коры (серпентизированный перидотит), где возможно нахождение этих минералов, непосредственно под тыловой зоной. На участке субдуцируемой океанической коры между фронтальной и тыловой вулканическими зонами, т.е. под зоной ослабления вулканической активности, нет отчетливых источников воды: 7 -клинохлор пересекает этот участок по слою 3В (см. Рис. 7б), где этот минерал практически отсутствует.

Рис. 8

 Таким образом, два участка дегидратации водосодержащих минералов располагаются непосредственно под фронтальной и тыловой вулканическими зонами Курильской ОД. Модель магмообразования, основанная на рассмотренных выше данных, показана на рис.8. Отделяющаяся от субдуцированной океанической коры вода мигрирует вверх и, попадая в область более высоких температур в пределах мантийного клина, является причиной плавления. Наряду с этим не исключается и сценарий, по которому вода, отделяющаяся от поддвигаемой плиты в преддуговой области, гидратирует основание мантийного клина, увлекаемое вниз субдуцируемой плитой (наведенная конвекция). Последующая дегидратация амфибола, талька в ассоциации с форстеритом и других водосодержащих минералов из основания мантийного клина может быть дополнительным источником воды под фронтальной зоной.  

Для других островных дуг при более горячей или при более холодной зонах субдукции принципиальная картина отделения Н2О от поддвигаемой плиты и, соответственно, сценарий магмообразования не изменится. Однако, сдвиг системы геотерм океанической коры и подошвы мантийного клина влево - при холодной и вправо - при горячей зоне субдукции приведет к изменению местоположения вулканического фронта, а также фронтальной и тыловой зон, как например, в Марианской ОД, где нет деления на фронтальную и тыловую зоны [2].  

Принципиально важной для магмообразования представляется оценка количества летучих, которые могут принять участие в магмообразовании, в сравнении с их количеством в островодужных магмах. Результаты проведенных нами [2] расчетов по методике Пикока [77] с учетом геодинамических параметров показали, что в зоне субдукции Курильской островной дуги высвобождается воды ~ в 10 раз больше, а СО2 ~ в 50 раз больше, чем содержится в островодужных магмах. Основным поставщиком Н2О в область магмообразования фронтальной зоны являются слои 1-3А океанической коры, а тыловой зоны - слой 3В (серпентизированный перидотит). Количество воды, выделяющееся при дегидратации слоя 3В, в 2 раза больше, чем при дегидратации остальных слоев океанической коры.

Все вулканы Курило-Камчатской островодужной системы извергают в среднем 0,09 км3/год или 43,5 км3 на 1 км длины дуги в 1 млн. лет. Это немного больше, чем в среднем для островных дуг. Для излияния на поверхность такого объема лав требуется не менее 220 км3 расплава на 1 км длины дуги в 1 млн. лет. Если исходить из модели плавления океанической коры верхней части поддвигаемой плиты [58,71,72], то для образования такого количества магмы при скорости поддвига 9 см/год требуется полностью расплавить слой мощностью 2 км, а при 20% степени плавления потребуется слой мощностью 10 км, что более, чем в два раза превысит мощность океанической коры. Это является дополнительным свидетельством невозможности плавления верхней части поддвигаемой плиты, хотя и не искючает полностью вероятность такого плавления и привноса небольшой части расплава в мантийный клин. Проведенный нами количественный подсчет объема мантийных выплавок [2] показывает, что плавление мантийного клина обеспечивает требуемый объем магмы без направленного изменения ее химического состава во времени, что характерно практически для всех ОД только в случае конвекции (наведенной субдукцией) в мантийном клине.

Математическое моделирование структуры поля температур зон субдукции при разных скоростях движения и разном возрасте поддвигаемой океанической коры [78] показало, что в стационарном режиме субдукции плавление океанической коры не происходит. Частичное плавление океанической коры может происходить только при очень ограниченных условиях: при повышении температуры верхней части поддвигаемой пластины выше 750oС за счет необычно высокого сдвигового напряжения (более 100 Мра) или за счет других причин, а также при субдукции очень молодой (моложе 2-5 млн лет) океанической литосферы.

Таким образом, для Курильской ОД, так же, как, очевидно, и для других ОД и активных окраин континентов со стационарным режимом субдукции, в том числе и для Южной Камчатки наиболее вероятной является модель плавления мантийного клина в зоне высоких температур под воздействием воды и других летучих компонентов (см. рис.7 и 8). Вместе с тем изменение структуры поля температур, особенно повышение температур поддвигаемой пластины и примыкающих участков мантии более чем на 80-100oС может привести к изменению условий плавления и появлению необычного типа вулканических пород.

Вариации условий магмообразования

Как уже отмечалось выше, необычный тип вулканических пород характерен для района сочленения Восточно-Камчатской вулканической дуги, включающей и вулканический пояс Центральной Камчатской депрессии, с Алеутской ОД. Особенности проявления вулканизма этого района, состав вулканических пород, закономерности пространственной их локализации подробно охарактеризованы в работах О.Н.Волынца с соавторами [12,15-17,19].

Северная группа вулканов от Толбачинской ареальной зоны шлаковых конусов до вулкана Шивелуч характеризуется высокой интенсивностью вулканизма и наличием магнезиальных базальтов и андезитов. Вулканы Харчинский и Заречный в этой группе почти целиком сложены магнезиальными базальтами с небольшим количеством магнезиальных андезибазальтов. Одноактные шлаковые и лавовые конуса Харчинской региональной зоны также сложены преимущественно магнезиальными базальтами и андезитами. В позднем плейстоцене за 30-40 тыс. лет эруптивными центрами Харчинского вулканического массива вынесено на поверхность около 80 км3 магнезиальных пород, преимущественно базальтов, что в 5-10 раз больше, чем для всей Камчатки в позднем плейстоцене - голоцене [15]. Магнезиальные породы отмечены также в Толбачинской зоне шлаковых конусов и в конусах побочных прорывов Ключевского вулкана, так же как и на вулкане Шивелуч [17].

Таким образом, полоса распространения магнезиальных андезитов протягивается вдоль простирания Восточно-Камчатской вулканической дуги, причем, количество магнезиальных пород заметно убывает как на юго-запад, так и на северо-восток от Харчинского массива, почти нацело сложенного магнезиальными базальтами. На удалении от этого массива также появляются более кислые породы - магнезиальные андезибазальты и даже андезиты [16,17].

Алеутское направление зоны сочленения также характеризуется наличием магнезиальных пород. На побережье Камчатского залива, к востоку от современного вулканического фронта магнезиальные базальты слагают небольшие изолированные лавовые и шлако-лавовые вулканы плейстоценового возраста [15,43]. Дайки аналогичного состава позднеплейстоцен-плиоценового возраста распространены на п-ове Камчатского мыса [15]. Магнезиальные андезиты драгированы также в Камчатском проливе и на подводном вулкане Пийпа, к северо-востоку от о.Беринга [14,15,93,94]. Общая протяженность зоны проявления магнезиальных пород на западном окончании Алеутской дуги ~430 км.

Чем отличаются условия магмообразования зоны сочленения Восточной Камчатки с Алеутской дугой, которые привели к появлению магнезиальной магмы, от условий стационарного режима Курил и Южной Камчатки? В случае косой субдукции, переходящей в трансформный разлом, в Камчатско-Алеутском сочленении создаются условия вспарывания и раздвижения погружающейся Тихоокеанской плиты и внедрения вещества более горячей подсубдукционной мантии в надсубдукционную зону [70]. О высокой температуре расплава свидетельствуют ликвидусные температуры магнезиального оливина Заречного вулкана, составляющие ~1280oC [16]. Расчеты структуры поля температур [83], проведенные для объяснения природы современного вулканизма Срединного хребта, показали, что температура на контакте поддвигаемой пластины с более горячей мантией в таких условиях может повышаться на 200-300oС. При этом возможно не только плавление перидотита мантии под воздействием воды и других летучих компонентов с излиянием магнезиальных базальтов, но и частичное подплавление океанической коры на контакте ее с более горячей мантией и образование магнезиальных андезитов адакитового типа, как это наблюдается на подводном вулкане Пийпа [14,93,84]. О возможном подплавлении океанической коры в районе вулканов Шивелуч, Харчинский, Заречный свидетельствуют некоторые геохимические параметры, характерные для адакитов, в частности, высокие концентрации Sr, Ba, низкие концентрации тяжелых РЗЭ при высоких отношениях FeO/MgO, La/Yb и низких отношениях K/La[15,16].

Анализ возможных механизмов появления на Камчатке внутриплитного геохимического типа вулканических пород, который характеризуется повышенными, по сравнению с ОД-породами, концентрациями Ti, Nb и Ta и отсутствием Ta-Nb минимума на спайдерграммах Д.Вуда [92], проведен О.Н.Волынцом [89]. Им рассмотрены две возможные гипотезы. По одной из них [79], источником обогащения этими элементами внутриплитных магм служит та же самая субдуцируемая океаническая кора, которая определяет геохимическую специфику ОД-магм, но сценарии поступления Ti, Nb, Ta и других элементов в расплав различны.

Формирование ОД-магм происходит при плавлении вещества мантийного клина под воздействием флюидов, отделяющихся от поддвигаемой плиты. Низкие содержания Ta, Nb, Ti в ОД-магмах объясняются тем, что эти элементы, основным концентратором которых является рутил [84], обладают низкой растворимостью во флюиде. При более высоких температурах, превышающих 750oС, возможно частичное плавление базальта океанической коры в водонасыщенных условиях [78, см. также рис. 7б], и эти выплавки, в соответствии с экспериментальными данными [84], имееют более высокие концентрации Ti, Nb, Ta. По мнению О.Н.Волынца [89], по такому сценарию могут формироваться только верхнемиоценовые - плиоценовые К-щелочные базальтоиды Западной Камчатки, слагающие преимущественно субвулканческие тела. Нам представляется этот сценарий вполне правдоподобным, тем более, что на спайдерграммах Д.Вуда в этих породах проявлен Ta-Nb минимум, хотя и менее глубокий [89, Fig.10]. Добавим лишь, что на глубинах около 200 км источником большого объема флюидов из поддвигаемой плиты может служить дегидратация серпентина и талька [2], а более высокая температура может быть обусловлена внедрением более горячего подсубдукционного мантийного материала в более высокие горизонты при отрыве и погружении нижней части поддвигаемой плиты за счет ее отрицательной плавучести после остановки субдукции.

Для объяснения появления внутриплитных магм в пределах Восточной Камчатки и Срединного хребта О.Н.Волынец [89] привлекает гипотезу, по которой источником внутриплитных магм является горячее вещество обогащенных мантийных плюмов, взаимодействующее с деплетированной мантией MORB-типа. По предложенной О.Н.Волынцом модели, неактивная ("умершая") зона субдукции под Срединный хребет не препятствует подъему зарождающихся на больших глубинах мантийных плюмов в области мантийного клина над зоной субдукции, где в позднемиоцен-голоценовое время внутриплитные вулканиты проявлены вместе со значительно преобладающими ОД-породами. На Восточной Камчатке внутриплитные верхнемиоценовая щелочно-базальтовая и плиоценовая щелочнооливиновая серии формировались до ОД-этапа вулканизма, а в плиоцене новая зона субдукции отсекла мантийные плюмы от мантийного клина, в результате чего в плейстоцене и голоцене внутриплитный вулканизм не проявлен.

Не отрицая в целом вероятности такого сценария проявления внутриплитного вулканизма, хотим обратить внимание на следующие обстоятельства. Прежде всего, внутриплитные магмы характерны только для того сегмента ОД-системы, где произошел перескок зоны субдукции в конце миоцена - плиоцене (см. рис.5). Далее, внутриплитный вулканизм Срединного хребта проявлен вместе с островодужным как в пространстве, так и во времени, а на Восточной Камчатке предшествует ему. Прекращение ОД-вулканизма в Срединном хребте повлекло за собой прекращение и внутриплитного вулканизма, т.е. мантийный плюм иссяк вместе с затуханием ОД-вулканизма.

Исходя из этих обстоятельств, нам представляется более вероятным несколько иной сценарий проявления внутриплитного вулканизма. Если гипотеза отрыва субдуцированной части плиты под Срединным хребтом после прекращения субдукции в конце миоцена верна, то в образовавшуюся брешь будет внедряться более горячее вещество подсубдукционной части мантии (см. рис.6). В результате этого за счет повышения температуры более, чем на 80-100oС станет возможным частичное плавление слоев 1, 2 и 3А океанической коры в верхней части поддвигаемой пластины. Основная же масса вещества мантии будет плавиться под воздействием флюидов по ОД-сценарию. В результате будут выплавляться и типичные ОД-магмы, и магмы с повышенным содержанием Ti, Nb и Ta, т.е. магмы внутриплитного геохимического типа. При этом прекращение ОД-вулканизма за счет истощения флюидов из субдуцированной плиты повлечет за собой и прекращение внутриплитного вулканизма, так как оба эти типа вулканизма проявляются лишь при наличии источника воды, в данном случае за счет дегидратации серпентина и талька.

С этих же позиций объяснимо и появление внутриплитных магм на Восточной Камчатке в плиоцене перед проявлением ОД-вулканизма. В начальный этап субдукции передний край поддвигаемой плиты контактирует с более горячей мантией, в результате чего происходит частичное плавление слоев 1, 2 и 3А океанической коры с повышением концентраций Nb, Ta и Ti в расплаве. Аналогичный механизм был ранее предложен К.Кобаяши [65] для объяснения условий формирования бонинитов.

Таким образом, для объяснения природы проявления внутриплитного геохимического типа пород среди ОД-вулканитов, а также появления магнезиальных пород адакитового типа в зоне сочленения Курило-Камчатской ОД-системы с Алеутской дугой предлагается один и тот же механизм частичного плавления кровли поддвигаемой плиты за счет более высокой температуры контактирующих участков мантии. Для проверки этой гипотезы требуются дополнительные исследования по условиям формирования геохимической специфики островодужных и внутриплитных магм в типовых и аномальных районах Камчатки, по выявлению глубинной структуры под Срединным хребтом Камчатки геофизическими методами, в первую очередь методом сейсмической томографии, а также математическое моделирование структуры поля температур аномальных участков.

Заключение

Современную структуру Курило-Камчатской ОД-системы определяют разновозрастные вулканические пояса, которые представляют собой вулканические дуги над зонами субдукции. В конце олигоцена - миоцене существовала Срединно-Камчатско-Курильская система дуг. В пределах Срединно-Камчатской дуги этой системы, располагавшейся на месте современного Срединного хребта Камчатки (см. рис.5), отчетливо проявлена вулканическая дуга, реконструируются тектоническая (невулканическая) дуга и глубоководный желоб, северная часть которого в пределах запада Командорской котловины проявляется в виде погребенного под осадками желоба, а также фиксируируется по современным гравиметрическим и сейсмологическим данным. Современные сейсмологические данные (см. рис.4) свидетельствуют о том, что в настоящее время, возможно, еще наблюдаются небольшие подвижки в зоне субдукции этой системы.

В конце миоцена - начале плиоцена на участке от Авачинского залива до Камчатского полуострова в результате блокировки зоны субдукции, по-видимому, за счет аккреции полуостровов Восточной Камчатки произошел ее перескок на современное положение и отмирание зоны субдукции под Срединный хребет, хотя вулканизм проявлялся еще и в голоцене, а к настоящему времени сохранился лишь один активный вулкан.

На участке к югу от Авачинского залива, т.е. в пределах Южной Камчатки и Курил субдукция сохранилась практически в неизменном виде с конца олигоцена. При этом в северной части Южной Камчатки произошло наложение северо-восточных структур современной дуги на северо-западные структуры верхнеолигоцен-миоценовой дуги (см. рис. 5).

В соответствии с тектонической историей островодужного этапа развития региона и геодинамическими параметрами зоны субдукции выделяются следующие районы (сегменты) современной Курило-Камчатской островодужной системы: Срединно-Камчатский, Восточно-Камчатский, Северо-Курильский, Центрально-Курильский и Южно-Курильский. Восточно-Камчатский сегмент является примером начального этапа субдукции, Срединно-Камчатская дуга - примером затухания субдукции, а для остальных районов характерен стационарный режим субдукции с разными геодинамическими параметрами. Вариации химического состава вулканических пород зависят от условий магмообразования и состава плавящегося субстрата.

На Камчатке и Курилах при стационарном режиме субдукции выплавляются типичные ОД-магмы за счет внедрения флюида из поддвигаемой плиты в в мантийний клин, где происходит плавление в зоне высоких температур, достаточных для плавления "мокрого" перидотита. Две вулканические зоны - фронтальная и тыловая обусловлены двумя уровнями отделения воды от разных водосодержащих минералов. Большинство водосодержащих минералов дегидратируются под фронтальной зоной. Источником воды под тыловой зоной является дегидратация серпентина и талька.

В аномальных участках, а именно в зоне сочленения Курило-Камчатской ОД-системы с Алеутской дугой, в Срединном хребте Камчатки после прекращения субдукции и на Восточной Камчатке в начальный этап формирования новой зоны субдукции возможно частичное плавление верхней части субдуцируемой плиты с излиянием внутриплитного геохимического типа лав и лав с адакитовой тенденцией. Частичное плавление океанической коры возможно в результате более высокой температуры на контакте с более горячими, по сравнению с обычными ОД-условиями, участками мантии, либо за счет разрыва поддвигаемой плиты (сочленение с Алеутской дугой, прекращение субдукции под Срединный хребет и отрыв тяжелой части субдуцированной плиты), либо в начальный период субдукции на Восточной Камчатке в плиоцене.

Список литературы

1. Авдейко Г.П. Закономерности распределения вулканов Курильской островной дуги // Докл. АН СССР. 1989. Т. 304. N5. С. 1196-1200.

2. Авдейко Г.П. Геодинамика проявления вулканизма Курильской островной дуги и оценка моделей магмообразования // Геотектоника. 1994. N2. С. 19-32.

3. Авдейко Г.П., Волынец О.Н., Антонов А.Ю. Вулканизм Курильской островной дуги: структурно-петрологические аспекты и проблемы магмообразования // Вулканология и сейсмология. 1989. N5. С. 3-16.

4. Авдейко Г.П., Волынец О.Н., Егоров Ю.О. Вулкано-тектоническое районирование и геодинамические условия магмообразования Курило-Камчатской островодужной системы // Материалы совещания "Тектоника, геодинамика и процессы магматизма и метаморфизма". Т. 1. М.: ГЕОС, 1999. С. 20-24.

5. Авдейко Г.П., Пилипенко Г.Ф., Палуева А.А., Напылова О.А. Геотектонические позиции современных гидротермальных проявлений Камчатки // Вулканология и сейсмология. 1998. N6. С. 85-99.

6. Авдейко Г.П., Попруженко С.В., Палуева А.А. Тектоническое развитие и вулкано-тектоническое районирование Курило-Камчатской островодужной системы // Геотектоника, в печати

7. Апрелков С.Е., Смирнов Л.М., Ольшанская О.Н. Природа аномальной зоны силы тяжести в Центрально-Камчатской депрессии // Глубинное моделирование геологических структур по гравитационным и магнитным данным. Владивосток, 1985. С. 68-71.

8. Балуев Э.Ю., Перепелов А.Б., Ананьев В.В., Тактаев В.И. Высококалиевые андезиты фронтальной части островной дуги (Камчатка) // Докл. АН СССР. 1979. Т. 279. N4. С. 977-981.

9. Бахтеев М.К., Морозов О.А., Тихомирова С.Р. Структура Восточно-Камчатской безофиолитовой коллизионной сутуры - надвига Гречишкина // Геотектоника. 1997. N3. С. 74-85.

10. Вишневская В.С., Бернард В.В. Возраст и условия формирования мезозойских кремнистых пород Камчатки // Очерки по геологиии Востока СССР. М.:Наука, 1985. С. 35-40.

11. Волынец О.Н., Авдейко Г.П., Цветков А.А. и др. Минеральная зональность четвертичных лав Курильской островной дуги // Изв. АН СССР. Сер.геол. 1990. N1. С. 29-44.

12. Волынец О.Н., Антипин В.С., Перепелов А.Б., Аношин Г.Н. Геохимия вулканических серий островодужной системы в приложении к геодинамике (Камчатка) // Геология и геофизика. 1990. N5. С. 3-13.

13. Волынец О.Н., Ермаков В.А., Колосков А.В. Включения в вулканических породах Курило-Камчатской островной дуги и их значение для понимания петрогенезиса // Петрология и геохимия островных дуг и окраинных морей. М.: Наука, 1987. С. 293-312.

14. Волынец О.Н., Колосков А.В., Ягодзинский Дж. и др. Бонинитовая тенденция в лавах подводного вулкана Пийпа и его обрамления (западная часть Алеутской дуги). 1. Геология, петрохимия, минералогия // Вулканология и сейсмология. 1992. N1. С. 3-23.

15. Волынец О.Н., Мелекесцев И.В., Пономарева В.В., Ягодзински Дж.М. Харчинский и Заречный вулканы - уникальные центры позднеплейстоценовых магнезиальных базальтов на Камчатке: вещественный состав вулканических пород // Вулканология и сейсмология. 1998. N4-5. С. 5-18.

16.. Волынец О.Н., Мелекесцев И.В., Пономарева В.В., Ягодзински Дж М. Харчинский и Заречный вулканы - уникальные центры позднеплейстоценовых магнезиальных базальтов на Камчатке: вещественный состав вулканических пород // Вулканология и сейсмология. 1999. N 1. С. 31-45.

17. Волынец О.Н., Пономарева В.В., Бабанский А.Д. Магнезиальные базальты андезитового вулкана Шивелуч // Петрология. 1997. Т.5. N2. С. 206-221.

18. Волынец О.Н., Пузанков Ю.М., Аношин Г.Н. Геохимия неоген-четвертичных вулканических серий Камчатки // Геохимическая типизация магматических и метаморфических пород Камчатки. Труды института геологии и геофизики. Вып.390. Новосибирск, 1990. С. 73-114.

19. Волынец О.Н., Успенский В.С., Аношин Г.Н. и др. Эволюция геодинамического режима магмообразования на Восточной Камчатке в позднем кайнозое (по геохимическим данным) // Вулканология и сейсмология. 1990. N5. С. 14-27.

20. Волынец О.Н., Флеров Г.Б., Шанцер А.Е., Мелекесцев И.В. Курило-Камчатская островная дуга. Камчатский сегмент // Петрология и геохимия островных дуг и окраинных морей. М.:Наука, 1987. С. 56-85.

21. Вулканы и четвертичный вулканизм Срединного хребта Камчатки /Авт. Н.В.Огородов и др. М.: Наука, 1972. 190 с.

22. Геологическое строение зон активного кайнозойского вулканизма / Сост. В.С.Шеймович, М.Г.Патока. ПГО "Камчатгеология". М.:Недра, 1989. 207 с.

23. Гравитационное поле и рельеф дна океана / Ред. С.А.Ушаков. Л.:Недра, 1979. 295 с.

24. Исаев Е.Н., Ушаков С.А., Гайнанов А.Г. Геофизические данные о закономерностях структуры коры в северной части Тихоокеанской переходной зоны // Земная кора островных дуг и дальневосточных морей. М.:Наука, 1972. С. 69-83.

25. Карта полезных ископаемых Камчатской области м-ба 1:500000. Петропавловск-Камчатский: Камчатгеолком, издательство ВСЕГЕИ, 1999.

26. Колосков А.В. Изотопно-геохимическая неоднородность позднекайнозойских вулканитов Камчатки, геометрия субдукционной зоны, модель флюидно-магматической системы // Вулканология и сейсмология, в печати

27. Кононов М.В. Тектоника плит северо-запада Тихого океана. М.:Наука, 1989. 168 с.

28. Константиновская Е.А. Геодинамика коллизии островная дуга - континент на западной окраине Тихого океана // Геотектоника. 1999. N 5. С. 15-34.

29. Леглер В.А. Развитие Камчатки в кайнозое с точки зрения теории тектоники литосферных плит (источники энергии тектонических процессов и динамика плит) // Тектоника литосферных плит. М.:Ин-т океанологии АН СССР, 1977. С. 137-169.

30. Майсен Б., Беттчер А. Плавление водосодержащей мантии. М.: Мир, 1979. 123 с.

31. Мархинин Е.К. Роль вулканизма в формировании земной коры. На примере Курильской островной дуги. М.:Наука, 1967. 254 с.

32. Мелекесцев И.В. Вулканизм и рельефообразование. М.:Наука, 1980. 211 с.

33. Объяснительная записка к тектонической карте Охотоморского региона масштаба 1:2500000 / Ред. Н.А.Богданов, В.Е Хаин. М.: ИЛРАН, 2000. 193 с.

34. Осипенко А.Б. Латеральные вариации химического состава породообразующих минералов в тыловой зоне Курильской островной дуги: амфиболы // Вулканология и сейсмология. 2000. N 2. С. 18-29.

35. Пискунов Б.Н. Геолого-петрологическая специфика вулканизма островных дуг. М.: Наука, 1987. 237 с.

36. Подводный вулканизм и зональность Курильской островной дуги /Авт. Авдейко Г.П., Антонов А.Ю., Волынец О.Н. и др. М.: Наука, 1992. 528 с.



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 216; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.53.202 (0.066 с.)