Апробація результатів дисертації. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Апробація результатів дисертації.



Матеріали дисертаційної роботи були повідомлені й обговорені на міжнародних конференціях: "Теплотехника и энергетика в металлургии", Дніпропетровськ (Україна), 2002, 1-3 жовтня; “Автоматизированные печные агрегаты и энергосберегающие технологии в металлургии”, Москва (Росія), 2002, 3-5 грудня; “Рациональное использование природного газа в металлургии”, Москва (Росія), 2003, 13-14 листопада; “Теория и практика решения экологических проблем в металлургической и горнодобывающей промышленности”, Дніпропетровськ (Україна), 2004, 5-7 жовтня; “Наука і Освіта /2005”, Дніпропетровськ (Україна), 2005, 7-21 лютого; "Теплотехника и энергетика в металлургии", Дніпропетровськ (Україна), 2005, 18-19 жовтня; “Металлургическая теплотехника: история, современное состояние, будущее. К столетию со дня рождения М.А. Глинкова”, Москва (Росія), 2006, 1-3 лютого; „Прикладні проблеми аерогідромеханіки та тепломасопереносу”, Дніпропетровськ (Україна), 2006, 16-17 листопада.

Публікації. Основні результати дисертаційної роботи опубліковані в 14 друкованих працях: 2 - у спеціалізованих журналах, 4 - у збірниках наукових праць, 6 - у матеріалах і працях наукових конференцій, 2 - патенти на винахід. З них 6 - у виданнях, що входять у перелік ВАК України.

Структура й обсяг роботи. Дисертація складається із вступу, чотирьох розділів, висновку, списку літературних джерел і додатків. Матеріал роботи викладений на 139 сторінках машинописного тексту, містить 10 таблиць, 34 рисунка, 5 додатків. Список використаних джерел становить 116 найменувань.


ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтована актуальність теми дисертаційної роботи, сформульовані мета та задачі дослідження. Наведено нові наукові результати, що отримані в роботі, показана їхня практична цінність, визначено особистий внесок здобувача, представлені відомості про апробацію роботи.

У першому розділі розглянуто способи та варіанти технічного здійснення пульсаційно-акустичних впливів, що підвищують ефективність спалювання газоподібного палива. На підставі аналізу літературних джерел для досліджень обраний спосіб, пов'язаний із зовнішнім акустичним впливом на процес згоряння палива, технічне здійснення якого не вимагає конструктивних змін у котельному агрегаті та пальниках.

Дослідження впливу зовнішніх акустичних дій на процес горіння проводилися такими вченими як Л.А. Вуліс, Ш.А. Єршин, А.П. Ярін, О.А. Кузнєцов, Д.М. Хзмалян, Я.А. Каган, В.І. Фурлетов, В.А. Скляров, В.Є. Дорошенко, Ю.Я. Борисов, Е.І. Розенфельд, В.М. Смоленський, О.Б. Хаврошкин, Н.Н. Панченко та ін. Переважно це експериментальні дослідження, які виконувалися на лабораторних стендах у вузькому інтервалі характеристик турбулентного газового струменя факела.

Аналіз літературних джерел по акустичному спалюванню дозволяє констатувати:

· акустичні впливи викликають зміну конфігурації факела, причому істотна ця зміна в початковій частині факела;

· по своїй фізичній суті зміна конфігурації факела пов'язана зі зміною характеру вихроутворення у факелі, яке найбільш чуттєве до акустичних коливань у порівнянні з іншими газодинамічними процесами, що відбуваються у факелі;

· у зміні параметрів факела під дією акустичних коливань відзначене збільшення ступеня турбулентності, швидкості просування фронту горіння, інтенсивності тепловиділення, температури факела й, як наслідок цих змін, відзначене поліпшення якості згоряння палива, тобто зниження хімічного недопалу;

· при акустичному впливі на факел проявляється ефект резонансу, тобто аномальна зміна параметрів факела при збігу частот акустичного впливу із частотами коливань у факелі та усередині робочого об’єму камери згоряння.

Для розробки та впровадження пульсаційно-акустичного спалювання палива в топках парових котлів, необхідне вирішення ряду наукових і технічних завдань, які не досліджувалися раніше: визначення характеру вигоряння газоподібного палива за довжиною турбулентного факела, що перебуває під впливом зовнішніх акустичних пульсацій; дослідження впливу зовнішніх акустичних пульсацій на газодинамічну й теплову картину в робочому об’ємі камерної топки котла; розробка технології та апаратурного забезпечення системи зовнішніх акустичних впливів, яка адаптована до конкретних умов згоряння палива для різних типів котельних агрегатів.

Рішення цих завдань вимагає математичного моделювання. Аналіз існуючих математичних моделей, що описують процеси вигоряння газоподібного палива в об’ємі турбулентного факела, а також моделей газодинамічних і теплових процесів у робочому об’ємі камерної топки показав, що відомі моделі не дозволяють урахувати вплив зовнішніх акустичних дій. Це потребує розробки нового підходу при математичному моделюванні.

У другому розділі виконано теоретичні та експериментальні дослідження структури та характеристик турбулентного дифузійного факела при пульсаційно-акустичному спалюванні палива.

Теоретичні дослідження виконані шляхом математичного моделювання процесу вигоряння газоподібного палива на основі величини лінійного розміру вихорів. Еквівалентний діаметр вихорів, що утворюються, залежно від конструктивних характеристик пальника і відповідно до характеру вихороутворення, приймався рівним dВ=  (де  - діаметр отворів, через які витікає газ у потік повітря, м). При русі вихорів у потоці, розміри вихорів збільшуються внаслідок їхньої асоціації до dВ= .

Математичне моделювання виконано шляхом розділення факела на лінійні відрізки, що відповідають розмірам вихорів, і опис процесу вигоряння в об’ємах цих відрізків. Допущеннями при моделюванні були фіксований об’єм факела, а також рівномірний попередній підігрів газу в об’ємі вихорів до температури запалювання.

На рис. 1 представлена розрахункова схема для моделювання процесу вигоряння газоподібного палива.

Математичне моделювання виконане шляхом спільного рішення диференціальних рівнянь теплообміну, руху й нерозривності газового потоку, перетворених з урахуванням прийнятих фізичних уявлень про утворення вихорів у турбулентному факелі та з урахуванням діаметрів вихорів (dВ):

 

,    (1)

,               (2)

,                  (3)

 

де  - щільність (кг/м3), теплоємність (кДж/(кг·К)), температура (К) газоповітряної суміші;  - час присутності вихору в потоці, с;  - коефіцієнт випромінювання;  - локальний коефіцієнт гідравлічного опору руху вихору в потоці за рахунок руйнування вихору в процесі вигоряння, обумовлений значенням числа Re;  - коефіцієнт випромінювання абсолютно чорного тіла, Вт/(м2·К4);  - швидкість одиночного вихору в турбулентному потоці, яка обумовлена для даного рішення рівнянням , м/с (тут  - середня швидкість потоку, м/с).

Інтенсивність вигоряння газу за довжиною факела, а, отже, і концентрація газу визначалася за зміною щільності газоповітряної суміші, що підтверджувалося результатами експериментів. При цьому зміна концентрації газу підкорялася рівнянню . Значення показника ступеня  який дозволяє врахувати розміри вихорів, визначається рішенням рівнянь (1-3):

 

, (4)

,   (5)

      (6)

 

де  - вихідне значення щільності газоповітряної суміші (кг/м3);  - швидкість просування фронту горіння в газоповітряній суміші, м/с;  - час повного вигоряння вихору за довжиною факела, с; Т0 – температура запалювання газоподібного палива, К; ТК – температура газів наприкінці процесу горіння, К.

Для перевірки адекватності математичної моделі, проведено серію фізичних експериментів з аналізу процесу вигоряння природного газу в об’ємі турбулентного дифузійного факела. Характеристика досліджених режимів при різних витратах природного газу () наведена в табл. 1.


Таблиця 1

Характеристика режимів дифузійного спалювання природного газу

Режим спалювання Re 103 uCP, м/с 10-4, м3

Перехідний

3,6 5,0 3,93
5,0 7,0 5,50

Розвинений

турбулентний

8,0 10,0 7,85
11,0 15,0 11,78

 

При проведенні досліджень аналізувався вплив діаметра турбулентних вихорів (dВ) на характер вигоряння газоподібного палива. Розмір турбулентних вихорів змінювали шляхом установки на зрізі пальника сітки з діаметром отворів =0,002 м, що дозволило провести дослідження в діапазоні =0,0002 0,004 м.

Характер зміни концентрації природного газу за довжиною факела визначався за зміною концентрації СО2 у продуктах згоряння.

Порівняння чисельних і експериментальних даних показало, що розроблена модель, якісно й кількісно відповідає реальному процесу вигоряння палива в об’ємі турбулентного факела. Відносна похибка розрахунку концентрації природного газу за довжиною факела не перевищує 7-15 %.

З використанням математичної моделі було проведено чисельні дослідження процесу вигоряння природного газу в об’ємі турбулентного факела в діапазоні варіювання вихідних даних (див. табл. 2), характерних для роботи котла ДКВР-10-13 з пальникомГМГ5,5/7 при різних відносних теплових навантаженнях () на котел.


Таблиця 2

Діапазони варіювання вихідних даних

dВ, мм Re 105 uCP, м/с , м3
0,5 1,5 1 20 1,4 4,3 3,0 9,0 0,082 0,246

 

Результати розрахунково-теоретичних досліджень у вигляді зміни відносної концентрації природного газу за довжиною факела () представлені на рис. 2.

Аналіз результатів розрахунку показав, що концентрація горючого газу за довжиною факела в значній мірі залежить від розмірів вихорів, а, отже, від інтенсивності сумішоутворення. Вигоряння газу в об’ємі вихорів dВ=1 5 мм є локальним або об'ємним вибухом залежно від характеру перемішування палива з повітрям. Організація спалювання газу з домінуючим масштабом вихорів dВ=1 5мм може негативно позначитися на роботі паливовикористовуючого агрегату. Вигоряння газу в об’ємі вихорів середнього масштабу dВ=5 10 мм є з погляду теорії горіння об'ємним вигорянням газу, а в об’ємі вихорів dВ>10 мм – поверхневим.

Розрахунково-теоретичні дослідження дозволили визначити вплив лінійного розміру вихорів на інтенсифікацію процесів сумішоутворення та вигоряння газоподібного палива в об’ємі турбулентного дифузійного факела, що перебуває під зовнішнім пульсаційно-акустичним впливом.

На основі математичної моделі встановлено вплив лінійного розміру вихорів на вид амплітудно-частотної характеристики факела

 

, Гц,                    (7)

 

що дозволило уперше розрахунковим шляхом визначити діапазон частот амплітудно-частотної характеристики факела залежно від конструктивних характеристик пальника.

У третьому розділі розроблена й адаптована математична модель теплових і газодинамічних процесів у топці парового котла при пульсаційно-акустичному спалюванні палива.

В основу математичного моделювання покладено спільне рішення диференціальних рівнянь теплообміну, руху й нерозривності газового потоку в об’ємі камерної топки. У результаті визначені швидкості та температури продуктів згоряння за перерізом топки, характер зміни температур, а також зміна положення максимуму температур за довжиною факела при пульсаційно-акустичному впливі.

Об'єктом математичного моделювання була топка парового котла ДКВР-10-13. Розрахункова схема топки котла, що показує її конфігурацію, розміщення пальників, місце розташування вихідного газоходу й конструктивні розміри топки, представлена на рис. 3.

Для математичного моделювання, відповідно до фізичної суті процесів, що відбуваються, об’єм топки розділено на дві частини (див. рис. 3).

Перша частина (з боку пальників) з газодинамічної точки зору представляє собою струминний плин газу безпосередньо перед пальниками. Профілі швидкості тут описуються рівнянням Шліхтінга. Струминний плин газу вдалині від пальника деформовано внаслідок втікання газу в потенційну область плину. Деформація профілю швидкості в цьому випадку відбувається за експоненціальним законом, а швидкість газу визначається рівнянням, отриманим у результаті рішення рівняння Ейлера методом власних функцій:

 

, (8)

 

де uШ – швидкість газу в перерізі струменя відповідно за профілем Шліхтінга;  - радіус вихідного перерізу пальника;  - коефіцієнт члена ряду, .

Для визначення швидкостей газу в другій частині топки, з потенційним плином газу, використане рішення рівняння Лапласа методом власних функцій. Власні функції для розглянутої задачі мають вигляд:

 

Х= ,          (9)

У= ,                            (10)

Z= ,    (11)

 

де , , - власні числа, обумовлені виразами: , ,  (тут k і n – індекси підсумовування членів ряду).

Отримані значення швидкостей газу в топці використані при описі теплових процесів, який виконувався шляхом спільного рішення рівняння теплообміну й руху методом кінцевих різниць з визначенням температури і концентрації продуктів згоряння за довжиною факела та по висоті топки.

Адекватність математичної моделі перевірена шляхом порівняння результатів математичного моделювання з результатами, отриманими при промисловому випробуванні системи пульсаційно-акустичного спалювання природного газу в топці парового котла ДКВР-10-13. При використанні математичної моделі початкова температура при розрахунках приймалась рівною експериментальній (див. рис. 4) температурі газоповітряної суміші на перерізі амбразури пальників (по осях пальників). Порівняння результатів чисельного дослідження й даних випробувань показало, що похибка розрахунку температури уздовж вісі факела не перевищує 5-14%.

З використанням математичної моделі проведено чисельні дослідження й розраховані температури в робочому об’ємі камерної топки котла ДКВР-10-13 при роботі котла з відносним тепловим навантаженням у діапазоні значень =0,4 1,5. Дослідження проведені при звичайному режимі роботи котла та з впливом акустичних пульсацій на процес спалювання палива. Результати розрахункових досліджень температур за віссю пальника 1 (див. рис. 3) представлені на рис. 4.

Чисельні дослідження дозволили встановити наступне:

- робота котла при відносних теплових навантаженнях нижче 0,6 від номінального характеризується низьким температурним рівнем у топці через зниження витрати продуктів згоряння й появи в топці холодних застійних зон;

- при роботі котла з впливом акустичних пульсацій положення максимального значення температур при всіх режимах його роботи переміщається до вихідного перерізу амбразури пальника й становить 0,5 0,7м.

Отримані в цій главі значення температур газу, а також дані про зміну положення максимуму температур використано при комплексному аналізі ефективності впливу акустичних пульсацій на показники роботи парового котла.

У четвертому розділі наведено результати експериментальних досліджень, що підтверджують позитивний вплив зовнішніх пульсаційно-акустичних дій на якість спалювання газоподібного палива, та їхня залежність від розмірів топки парового котла.

В основу методики експериментальних досліджень покладено застосування резонансного ефекту при пульсаційно-акустичному спалюванні палива, що полягає в збігу частот зовнішніх вимушених акустичних пульсацій із частотами пульсацій у топці парового котла. Дослідження пульсаційно-акустичного спалювання палива проводилися в промислових умовах на паровому котлі ДКВР-10-13. Вид котла й необхідне апаратурне забезпечення для визначення акустичних характеристик топки представлені на рис. 5.

Виміри акустичних характеристик топки парового котла виконувалися за допомогою комплекту акустичної апаратури фірми “Brьel & Kjжr”.

Дослідження системи пульсаційно-акустичного спалювання палива виконано у два етапи.

На першому етапі визначалися власні частоти акустичних коливань у робочому об’ємі топки парового котла для дотримання резонансу із частотами зовнішніх акустичних коливань. Одночасно із записом амплітудно-частотної характеристики виконувалися виміри температур у камері згоряння, здійснювався хроматографічний аналіз продуктів згоряння, відібраних за топкою, і обчислювався хімічний недопал палива. Вимір температур у топці котла виконувався шляхом зондування топки по глибині й по ширині в горизонтальній площині.

На другому етапі фіксувалися зміни теплотехнічних характеристик роботи парового котла внаслідок впливу на факел акустичних коливань із частотою 145 Гц (рівень звукового тиску 108Дб), що була прийнята як робоча й відповідала одному з максимумів звукового тиску на амплітудно-частотній характеристиці топки. Акустичні коливання, що порушувалися динамічним збудником, установленим в оглядовому вікні топки котла, направляли на факел.

Аналіз експериментальних досліджень підтвердив результати теоретичних досліджень. Зміна характеристик роботи котла проявлялася в підвищенні температури газів у топці котла на 50 60ОС та зниженні хімічного недопалу палива з 2,0 % до 0,5 %.

Для одержання загальної картини впливу пульсаційно-акустичного спалювання палива на характеристики роботи котла проведені розрахункові дослідження, які виконано на основі нормативного методу розрахунку котельних агрегатів.

Результати досліджень показали, що збудження акустичних пульсацій може помітно підвищити ефективність роботи котла в усіх режимах його експлуатації й цим забезпечити економію палива на виробництво теплової енергії, а саме, в результаті застосування пульсаційно-акустичного спалювання палива к.к.д. котла збільшується на 1,0 1,5%, питома витрата умовного палива знижується на 0,5 0,7 кг у.п. / ГДж.

Оцінка поліпшення екологічних показників роботи котла показала, що річне зниження викидів СО в атмосферу залежить від навантаження на котел і складає 33 56 т/рік при незмінному рівні викидів NXOУ.

В результаті досліджень розроблені спосіб і конструкція системи пульсаційно-акустичного спалювання палива в топках котельних агрегатів (патент на корисну модель "Спосіб спалювання палива" № 25300) і топка котла для здійснення способу (патент на корисну модель "Топка котла" № 25608), що пройшли промислову апробацію. Суть технічних рішень, що покладені в основу винаходів, полягає в тім, що топка по периметру обладнується акустичним поясом, що є гофрованою поверхнею (див. рис. 6) та дозволяє використовувати енергію відбитих акустичних коливань.

Розроблені технологічні рекомендації із застосування системи пульсаційно-акустичного спалювання палива на різних типах котельних агрегатів, на основі яких розроблено технічне завдання на реконструкцію топки парового котла ДКВР-10-13. Очікувана економія природного газу - 114 тис. м3/рік, строк окупності інвестицій менш одного року.


ВИСНОВКИ

 

У дисертації вирішена важлива науково-технічна задача підвищення ефективності спалювання природного газу в промислових котлах на основі технології пульсаційно-акустичного спалювання палива.

Основні результати роботи полягають у наступному:

1. На підставі аналізу напрямків підвищення ефективності роботи промислових котлів доведена перспективність використання пульсаційно-акустичного методу спалювання палива на серійних котельних агрегатах.

2. Уперше запропонована система диференціальних рівнянь теплообміну, руху й нерозривності газового потоку для турбулентного дифузійного факела, що перебуває під зовнішнім пульсаційно-акустичним впливом на основі величини лінійного розміру вихорів, що дозволило розрахунковим шляхом визначити діапазон частот амплітудно-частотної характеристики факела залежно від конструктивних характеристик пальника.

3. На основі математичного моделювання визначено вплив лінійного розміру вихорів на інтенсифікацію процесів сумішоутворення та вигоряння газоподібного палива в об’ємі турбулентного дифузійного факела, що перебуває під зовнішнім пульсаційно-акустичним впливом. Порівняння чисельних і експериментальних даних показало, що відносна похибка розрахунку концентрації природного газу за довжиною факела не перевищує 7-15 %.

4. Розроблена й адаптована математична модель газодинамічних і теплових процесів у робочому об’ємі камерної топки котла, яка дозволяє визначати швидкості і температури продуктів згоряння за перерізом топки, характер зміни температур, а також зміну положення максимуму температур за довжиною факела при пульсаційно-акустичному впливі. Порівняння результатів чисельного дослідження та експериментальних даних показало, що, похибка розрахунку температури уздовж вісі факела з використанням моделі не перевищує 5-14%. Отримані значення температур газу, а також дані про зміну положення максимуму температур використано при комплексному аналізі ефективності впливу акустичних пульсацій на показники роботи парового котла.

5. Уперше експериментально підтверджено вплив зовнішніх пульсаційно-акустичних дій на якість спалювання газоподібного палива в топці парового котла: підвищення температури в топці на 50 60 ОС, зниження хімічного недопалу палива з 2,0 % до 0,5 %, що відбувається за рахунок інтенсифікації процесів сумішоутворення та переміщення максимуму температур газу до вихідного перерізу амбразури пальників.

6. Розрахунковим шляхом показано, що збудження акустичних пульсацій може помітно підвищити ефективність роботи котла у всіх режимах його експлуатації й цим забезпечити економію палива на виробництво теплової енергії, а саме, в результаті застосування пульсаційно-акустичного спалювання палива к.к.д. котла збільшується на 1,0 1,5%, питома витрата умовного палива знижується на 0,5 0,7 кг у.п./ГДж. Річне зниження викидів СО в атмосферу складає 33 56 т/рік при незмінному рівні викидів NXOУ.

7. Розроблені спосіб і конструкція системи пульсаційно-акустичного спалювання палива в топках котельних агрегатів (патент на корисну модель "Спосіб спалювання палива" № 25300) і топка котла для здійснення способу, яка обладнана акустичним поясом для використання енергії відбитих акустичних коливань (патент на корисну модель "Топка котла" № 25608), що пройшли промислову апробацію.

8. Розроблені технологічні рекомендації зі застосування системи пульсаційно-акустичного спалювання палива на різних типах котельних агрегатів, на основі яких розроблено технічне завдання на реконструкцію топки парового котла ДКВР-10-13. Очікувана економія природного газу - 114 тис. м3/рік, строк окупності інвестицій менш одного року.


ПЕРЕЛІК ОПУБЛІКОВАНИХ рОБІт по темІ дисертацІЇ

 

1. Гичёв Ю.А., Адаменко Д.С. Возможность повышения эффективности энерготехнологических агрегатов путем пульсационно-акустического сжигания топлива // Металлургическая и горнорудная промышленность. 2007. №3. - С. 115-117.

2. Гичёв Ю.А., Адаменко Д.С., Коваль К.М., Косенко Ю. А. Результаты испытания и эффективность пульсационно-акустического сжигания топлива // Металургійна теплотехніка: Збірник наукових праць Національної металургійної академії України.– Дніпропетровськ: “ПП Грек О.С.”, 2007. С. 86-95.

3. Гичёв Ю.А., Адаменко Д.С. Снижение энергозатрат и решение экологической проблемы путем пульсационно-акустического сжигания топлива // Компрессорное и энергетическое машиностроение. 2006. №4 (6). – С. 40-42.

4. Гичёв Ю.А., Адаменко Д.С., Коваль К.М. Моделирование тепловых и газодинамических процессов в топке парового котла // Металургійна теплотехніка: Збірник наукових праць Національної металургійної академії України.– Дніпропетровськ: “ПП Грек О.С.”, 2006. С. 53-67.

5. Гичёв Ю.А., Адаменко Д.С., Коваль К.М. Моделирование процесса выгорания газообразного топлива в объеме турбулентного факела // Металургійна теплотехніка: Збірник наукових праць Національної металургійної академії України. У двох книгах. – Книга друга. – Дніпропетровськ: Пороги, 2005. С. 42-50.

6. Гичёв Ю.А., Адаменко Д.С. Влияние акустических воздействий в топке и газоходах парового котла на характеристики его работы // Металлургическая теплотехника. Сборник научных трудов Национальной металлургической академии Украины. Том 6. – Днепропетровск: НМетАУ, 2002. - С. 3-7.

7. Патент на корисну модель № 25300, МПК(2006) F23C 15/00, Спосіб спалювання палива; Гічов Ю.О., Адаменко Д.С. Номер заявки: u 2007 00185; Заявл. 09.01.2007. Опубл. 10.08.2007. Бюл. № 12. – 6 с.

8. Патент на корисну модель № 25608, МПК(2006) F23C 5/00, Топка котла; Гічов Ю.О., Адаменко Д.С. Номер заявки: u 2007 04475; Заявл. 09.01.2007. Опубл. 10.08.2007. Бюл. № 12. – 12 с: іл.

9. Гичёв Ю.А., Адаменко Д.С. К расчету выгорания газообразного топлива в объеме турбулентного факела под воздействием акустических пульсаций // Матеріали регіональної наукової конференції „Прикладні проблеми аерогідромеханіки та тепломасопереносу” – Дніпропетровськ: Дніпропетровський національний університет, 2006. – С. 79-80

10. Гичёв Ю.А., Адаменко Д.С. Исследование тепловых и газодинамических процессов в топке парового котла // Матеріали регіональної наукової конференції „Прикладні проблеми аерогідромеханіки та тепломасопереносу” – Дніпропетровськ: Дніпропетровський національний університет, 2006. – С. 85-86.

11. Гичёв Ю.А., Адаменко Д.С. Моделирование процесса выгорания газообразного топлива применительно к пульсационно-акустическому сжиганию // Сборник трудов III Междунар. науч.-практ. конф. “Металлургическая теплотехника: история, современное состояние, будущее. К столетию со дня рождения М.А. Глинкова” - М.: МИСиС, 2006. - С. 237-241.

12. Гичев Ю.А., Адаменко Д.С., Коваль К.М. Подход к решению задачи горения газообразного топлива в турбулентном факеле // Матеріали VІІІ Міжнародної науково-практичної конференції “Наука і освіта /2005”. Том 61. Техніка. – Дніпропетровськ: Наука і освіта, 2005. - С. 27-29.

13. Гичёв Ю.А., Адаменко Д.С., Ткаченко Г.А. Снижение выбросов СО в атмосферу путем пульсационно-акустического сжигания топлива // Матеріали І Міжнародної науково-практичної конференції “Науковий потенціал світу 2004”. Том 60. Технічні науки. – Дніпропетровськ: Наука і освіта, 2004. - С. 51-53.

14. Гичев Ю.А., Адаменко Д.С. Повышение эффективности использования природного газа при акустическом воздействии в топках энерготехнологических агрегатов // Сборник тезисов междунар. науч.-практ. конф. “Рациональное использование природного газа в металлургии” - М.: МИСиС, 2003. - С. 61-62.


АнотацІЇ



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 67; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.168.16 (0.067 с.)