Эволюция и динамика. Эквифинальное и переменное состояние геосистем




ЗНАЕТЕ ЛИ ВЫ?

Эволюция и динамика. Эквифинальное и переменное состояние геосистем



Ландшафтная сфера и вся составляющая ее иерархия геосистем формировалась в процессе исторического развития, и поэтому изучение большей части пройденного ими пути относится к компетенции полегеографии и геологии. Процесс эволюции ландшафтной оболочки, который мы мыслим как смену одних инвариантов геосистем другими, на протяжении геологических периодов шел в определенном направлении в результате саморазвития геосистем и воздействия на них изменяющихся внешних условий. Сменяющие друг друга инварианты представляют собой этапы эволюционного процесса. Сами они на всем протяжении эволюции были представлены множествам переменных состояний, каждое из которых надо рассматривать как временное преобразование инварианта – основной категории, на определенном отрезке эволюции остающейся относительно неизменной.

Все превращения условно неизменного инварианта геосистемы рассматриваются как ее динамика. Безусловно, в широком смысле динамика не отделима от эволюции, а эволюция от динамики. Для каждого инварианта время, прошедшее с момента его возникновения в процессе эволюции ландшафтной сферы мы считаем возрастом геосистемы, а время существования каждого из переменных состояний одного инварианта на определенном участке поверхности – долговечностью геосистемы. Таким образом, возраст геосистемы – это продолжительность ее существования в эволюционном ряду в качестве определенного структурно-динамического типа. Как правило, чем выше рангом подразделение природной среды, тем больше его возраст. При этом возраст отдельных подразделений одного и того же ранга (например геомов) может существенно различаться.

Очень часто о древности той или иной геосистемы судят на основе возраста одного из рельефа. Однако, знание возраста одного компонента бывает недостаточно. Надо различать возраст геосистемы и таковой отдельных ее составляющих. Возраст геосистемы определяется тем сроком, в течении которого взаимоотношение между ее компонентами продолжают более или менее подобными. Отдельные компоненты при этом могут быть старше. Установление возраста геосистем требует анализа связей между компонентами геосистем во временном разрезе , то есть необходимо составить представление об эволюции системных связей в том или ином интервале геологического летоисчисления. Однако это дело будущего, которое последует за изучением современных геосистем, их инвариантов и переменных состояний , а также за внедрением методов системного анализа в полеогеографию .

Вопросы долговечности геосистем целиком относятся к сфере физической географии. Они решаются методами полевых ландшафтных исследований. Долговечностью биогеоценозов одной и той же фации в разных геохорах может быть неодинаковой. Понятие долговечности чаще всего применяется к выделам фации или к биогеоценозам. При этом имеется в виду период времени, в течении которого тот или иной биогеоценоз удерживает за собой определенную территорию, что нередко можно установить сравнительно точно. Долговечностью отличаются многие коренные биогеоценозы и другие коренные геомеры, которым присущ и относительно больший возраст. Наряду с этимнекоторые серийные биогеоценозы недолговечные , хотя и относятся к серийным фациям , имеющим большой возраст.

Понятие долговечности применимо также к группам и классам фаций и к геомам. Оценка возраста и долговечности геосистемы в единицах времени (относительных и абсолютных) составляет одну из ближайших, пока не решенных задач учения о геосистемах. В настоящее время в этом плане мы можем опираться преимущественно на сравнительно-географические наблюдения, ибо до сих пор не выработано применяемой методики летоисчисление для датировки динамических трансформаций геосистем.

Динамический критерий в ландшафтоведении имеет довольно длительную историю, но он укрепился и приобрел значение во всех разделах этой науки лишь после того, как начала получать признание теория открытых систем в новом ее толковании данном Л. Берталанфи (Bertalanffy, 1950), У. Эмби (Ashby,1958) и другие. Системный подход оправдывает себя при изучении подразделений природной среды всех уровней и особенно плодотворен там, где системная организация геомеров и геохор уже в настоящее время может быть изучена с применением точных методов. Сейчас это достижимо на типологическом уровне. Необходимой предпосылкой для правильного понимания динамической природы геосистем служит представление об их инвариантном и преобразуемом началах. Инвариантное начало сохраняется неизменным при всех динамических преобразованиях . Преобразуемая часть геосистем (уже преобразованная и потенциально доступная преобразованию) находится в динамическом состоянии.

“Инвариант” - в известной мере абстрактное понятие, а “динамическое состояние”- конкретное воплощение модификации геосистем с ее повидовыми морфологическими и функциональными особенностями. Динамика в отличие от эволюции проявляется в пределах определенной структуры геосистемы. Между понятиями “динамика” и “структура” существует непосредственная связь – они взаимообусловлены. С другой стороны, по трактовке некоторых философов, структура – это инвариантный аспект системы. Если следовать этой формуле, то структура геосистемы и есть инвариантное начало.

Динамика проявляется в рамках определенного “кадра” в эволюционном ряду развития геосистемы. Последний можно для образности сравнить с кинематографической лентой. Каждый кадр такой ленты соответствует определенному инварианту и содержит некое множество переменных структур. Переход одного инварианта в другой (смена кадра) – это уже проявление эволюционного развития природной среды, для которого динамические явления представляют одну из движущих сил .

Ландшафтной сфере свойственно множество динамических состояний, полную типизацию которых в настоящее время мы еще можем предложить. Все же рационально отличить два вида состояний:

1) эквифинальное 2) переменное.

К эквифиальным геосистемам относится коренные, условно-коренные и квази (ложно) коренные.

Коренные геосистемы – это устойчивые геомеры и геохоры с прочно установившимися внутрисистемными и внешними связями. Это понятие соответствует общеизвестному представлению о климаксе, или заключительном природном комплексе. Условнокоренные геосистемы обычно близки к коренным и отличаются от последних лишь тем, что за недостатком времени еще не пришли в равновесие как внутри себя, так и с внешней средой. Растительность условнокоренных геосистем соответствует понятию плезиоклимакса по Г. Госсену (Gaussen, 1954) или потенциальной растительности по Р. Тюксену (Tuxen, 1957). Квазикоренные геосистемы по сравнению с коренными видоизменены в результате гипертрафии или гипотрофии одного из компанентов системы (например, избытка влаги и недостатка кислорода на торфяных болотах, скопления солей в грунтах солончаках и прочие).

Все геосистемы эквифинального вида – коренные, условнокоренные и квазикоренные – представляют собой своего рода материнские ядра многочисленных серийных геосистем, ряды которых исходят от эквифинала, когда сукцессия начинает прогрессировать, и всходят к нему, когда коренное (или условно-, или квази-) состояние начинает восстанавливаться.

Природа серийных рядов во многом зависит от причин, вызвавших отклонение от эквифинального состояния, выявление которых нередко представляет трудность.

Различного типа факторальные, динамические и прочие ряды серийных геосистем соответствуют сукцессионным рядам в понимание экологов , они заключают серию сменяющих друг друга состояний в ходе спонтанного развития или в результате воздействия человека. Каждой геосистеме свойственны ритмы изменчивые по годам, они входят в понятия ее состояния и должны учитываться при его определении. Состояние геосистемы – это не моментальный снимок геосистемы; оно может выявляться в интервале, например около 10 лет, если при этом не действуют какие – либо обстоятельства, удлиняющие или укорачивающие этот срок.

Необходимо иметь в виду, что в любое время сколько – нибудь значительный участок ландшафтной сферы состоит из многих разнокачественных геосистем – не только по морфологическим и функциональным особенностям , но и по динамическому состоянию. Так, почти каждую геохору, например мезогеохору , мы можем рассматривать как мозаику геомеров с различными динамическими тенденциями. От, того как сочетаются динамические категории геомеров в пределах геохоры, зависят многие ее существенные особенности. Коренные, квазикоренные и разных ступеней серийные биогеоцинозы граничат друг с другом, и образуемые при этом рубежи неравнозначны в структурно – динамическом отношении. Так, в случае спонтанных геомеров могут быть выявлены следующие виды примыкания их друг к другу (Сагава, 1967):

геосистема, относящаяся к коренной фации, примыкает к геосистеме другой коренной фации;

геосистема той же категории примыкает к серийной геосистеме, находящейся с ней в одном ряду развития;

геосистема той же категории примыкает к серийной геосистеме другого ряда развития;

серийные геосистемы одного и того же ряда развития примыкают друг к другу (в этом случае нередко рубежи нечетки и создается впечатление континуума);

контактируют серийные геосистемы разных рядов развития.

Существуют и другие виды примыкания геомеров друг к другу, например контакты перечисленных категорий геосистем с квазикоренными, в частности с различными кратковременно - и длительнопроизводными модификациями. Из сказанного следует, что анализ рубежей геосистем возможен только с учетом динамического состояния контактирующих друг с другом биогеоценозов.

Саморегуляция геосистем.

Наряду с повсеместно очевидными тенденциями к изменению структуры геосистем, при ближайшем анализе выявляется присущее им стабилизирующее начало, которое вместе с другими причинами определяется процессами соморегуляции. Таким образом, понятие о нем должно входить составной частью в содержании понятия о динамики геосистем вообще и в частности той ее категории, которую И. И. (1968) назвал стабилизирующей динамикой. Понимание стабилизирующей динамики соответствует совершенному представлению о гомеостазе. Этот термин, как известно, введен в обиход физиологами для обозначения относительного динамического постоянства внутренней среды и устойчивости основных физиологических функций организма. Но в последнее время термин “гомеостаз” начинает получать и более широкое толкование, а именно в кибернетики по отношению к любому саморегулирующемуся явлению. В этом смысле термин “гомеостаз” может применятся и к геосистемам. (Сочава, 1978)

Стабилизирующая динамика природной среды – чрезвычайно существенная особенность физико-географического процесса. Она способствует тому, что вдовые и родовые признаки фаций и геомов удерживаются во времени, несмотря на многочисленные воздействия извне на структуру геосистемы.

Гомеостаз – одно из главнейших условий, определяющих восстанавливаемость природных ресурсов и свойств окружающей среды ( самоочищение воздушного бассейна, водных масс, почв и прочее). Изучение механизма стабилизирующей динамики имеет большое практическое значение, если мы хотим рационально управлять воспроизводством природных богатств. Стабилизирующая динамика геосистем не менее значима, чем преобразовательная, однако до сих пор она мало изучена.

Под саморегулирующей геосистемы понимается приведение ее в устойчивое состояние в процессе функционирования – круговорота субстанции и излучение тепла, жизнедеятельности биоты и другое. Саморигуляция обеспечивает относительное равновесие всей системы. Саморигуляция и определяемое ею стабилизирующие начало обеспечивает относительное равновесие всей системы. Саморегуляция и определяемое ею стабилизирующее начало – это важнейший фактор организации геосистем . Сморегуляция удерживает на некоторый период времени переменные структуры геосистем в серийном ряду развития. Долговечность серийных фаций (а также их растительных, почвенных и других компонентов) во многом зависит от присущего им стабилизирующего начала. Саморегуляция в зависимости от сопровождающих ее условий определяет в одних случаях дискретность, в других – непрерывность изменения структуры на определенном пространстве (но это не значит, что тип природных рубежей зависит только от саморигуляции).

Саморегуляция обуславливает относительное равновесие геосистемы при спонтанном ее развитии. Она заметно проявляется и при рациональной мере воздействия, например антропогенного, на геосистему извне (сенокошение, выпас, нормированная рубка деревьев, рациональное водопользование и другое). При значительных нарушениях структуры геосистемы роль саморегуляции снижается, но в полной мере она не может быть устранена. Всегда остается радиационный фактор и региональные особенности климата, под влиянием которых коренная структура природной среды имеет шансы в той или иной степени восстановится, что требует разного и нередко большого промежутка времени.

Геосистемы с нарушенной структурой делятся, по крайней мере, на две категории:

геосистемы, относительно сохранившие свои спонтанные потенции и способные произвести первоначальную структуру за счет факторов саморгуляции;

Геосистемы коренным образом изменившие свою структуру, восстановление которой возможно лишь через длительный срок и только при воздействии планетарно – региональных движущих сил.

Таким образом, саморегуляция – это составная часть сложного процесса восстановления нарушенной структуры геосистемы. Причем действенность ее тем больше, чем меньше нарушена структура (Сочава, 1978)

Саморегуляция – свойство, проявляющееся в разных геосистемах по-разному в зависимости от их структурных особенностей. В основном, саморегуляция наиболее действенна в оптимальных условиях тепла и влаги. Например, в южных районах тайги она выражена сильнее чем в северо-таежных.

В спонтанных условиях саморегуляции направлена главным образом на обеспечении равновесия геосистемы, которое нарушается различными отклонениями воздействующих факторов среды от средней их нормы по ходу временных циклов (периоды засухи; резкие случающиеся раз в десятилетия похолодания; колебания уровня грунтовых вод).

Саморегуляция ни в коем случае не приостанавливает эволюцию природной среды. В спонтанных условиях она только сглаживает ее ход. В некоторых случаях направление эволюции непосредственно определяется саморегуляцией, например, когда механизм саморегуляции изменяется под влиянием внутренних и внешних (к эволюционирующей геосистеме) факторов .

Режим связей.

Саморегуляция геосистемы в значительной мере зависит от направленности взаимоотношений между составляющими ее компонентами. Очень важен при этом режим связей как геосистемы в целом , так и подчиненных ей систем. .Многое в этом отношении определяет наличие обратных связей. Геосистема как класс управляющих систем выявляется и описывается при макроподходе. При макроподходе она расчленяет на элементарные управляющие системы, число которых может быть довольно большим. Отдельные элементарные системы характеризуются наличием или отсутствием обратных связей, что обнаруживается при изучении их функционирования.

Обратные связи делятся на положительные и отрицательные (Ланге, 1961). Положительные обратные связи чаще усиливают цепные реакции, сопровождающие преобразовательную динамику; отрицательные обратные связи больше способствуют восстановлению равновесия, то есть определяют саморегуляцию, это относится к саморегуляции геосистем в региональном масштабе, а процесс саморегуляции рассчитан на длительный промежуток времени. Но обратные связи в качестве стабилизирующего фактора действуют и в геосистемах топологической размерности, при этом их эффект может проявится за меньший промежуток времени.

Стабильность системы обеспечивается не только отрицательной обратной связью. Положительная обратная связь при определенных условиях может обеспечить необходимый для стабилизации компенсационный эффект. Кроме того, при некоторых обстоятельствах любая обратная связь сама по себе не обеспечивает стабильность системы (Сачава, 1978). Последняя обеспечивается обратными связями отрицательного и положительного значения , но при определенных условиях.

Саморегуляция возможна, если связи, присущие системе, не абсолютно устойчивы. Последнее имеет место в природе для всех главнейших связей, определяющих коренной геомер и любую геохору.

Нередко исследователи необоснованно придают слишком большое значение высоким показателям связи (коэффициентам корреляции) между отдельными природными явлениями. Сами по себе эти высокие коэффициенты корреляции не служат гарантией постоянной значительной взаимообусловленности соответствующих явлениях и существования между ними жесткой связи. Высокий коэффициент корреляции в изменчивой обстановке геосистемы может выявляться при определенных непродолжительно действующих условиях и не оставаться постоянным не только в многолетнем, но и в годичном цикле.

Системы, в которых отдельные части плотно пригнаны к друг другу, где немыслимо существование этих частей при уклоняющихся соотношениях, должны быть крайне неустойчивыми, эфемерными, и, таким образом, по существу не реальны. Геомер, функции которого жестко лимитированы определенными показателями тепла или влаги, в особо засушливый период или годы крайнего похолодания распадается как структурный тип. Саморегуляция геомера возможна, если связи между его компонентами допускают определенную амплитуду показателей корреляции. Это обязательное условие устойчивой организации и необходимая предпосылка для саморегуляции.

Понятие об эпифации

Эпифация – это совокупность переменных состояний элементарных геомеров, каждое из которых подчинено одному материнскому ядру – одной из эквифинальных фаций; ее можно рассматривать как совокупность динамически связанных геомеров, соотношение между которыми целесообразно изучать количественными методами.

Эквифинальные структуры, их переменные состояния и модификации, вызванные внешними агентами, в пределах эпифации представляют динамическую целостность. В совокупности они образуют множество, для упорядочения представления о котором возможна только классификация всех переменных состояний (включая и их трансформацию под влиянием человека) в связи с материнским ядром – эквифинальной фации. То есть, коренная фация, сопряженные с ней ряды серийных фаций, а также различные ее модификации – все вместе должно рассматриваться как некое динамическое целое. Изучение этого целого имеет очень большое значение для правильной постановки проблем ландшафтоведения. Описание геомеров с переменной структурой без указания на принадлежность их к той или иной эпифации в основном не обеспечивает нужной информации, в особенности когда дело касается серийных и модифицированных антропогенными воздействиями геосистем. В общей классификации геомеров для каждой коренной фации должны быть указаны ряды ее переменных состояний.

Так же надо поступать при обозначениях в классификации геомеров более высокого ранга. Если группа (или класс) фаций заключает не только обобщение коренных фаций, но и всех свойственных им производных состояний, то группа (или класс) эпифаций должна представлять собою обобщение всех входящих в соответствующую группу (или класс) эпифаций коренных структур и переменных состояний. По такому же принципу обобщаются коренные и производные геосистемы в эпигеомы, а также в другие эпигеомеры более высокого ранга.

Материнским ядром эпифации является коренная фацианальная структура. Обособленное положение занимают квазикоренные фации, они возникают, когда структурные пропорции коренной фации нарушены вследствие гипертрофического воздействия какого – либо из факторов. Квазикоренные фации нередко выражены на большой площади и устойчивы во времени. Заметим, что их связь с коренными структурами представляет не только теоретический интерес, она указывает на пути оптимизации квазикоренного состояния, если в том есть необходимость. Во многих случаях квазикоренные фации находятся в сложном взаимоотношении с материнским ядром коренной фации. По характеру растительности и почв квазиеоренная фация представляет аналог экоклимакса. Опыт показывает, что в настоящие время преждевременно строить графы , в которых квазикоренные фации включаются как производные от коренной фации (Сачава, 1974)

Во круг условнокоренных фаций формируются самостоятельные эпифации со своими материнскими ядрами. Как уже говорилось, переменные состояния эпифации представлены серийными фациями и различными антропогенными модификациями. Те и другие образуют ряды (серийные и ряды трансформации) и представляют основное подвижное множество, слагающее эпиацию.

Переменные структуры имеют разную долговечность: к ним относятся кратковременнопроизводные и длительнопроизводные фации, а также различные спонтанные биогеоценозы серийного типа. Более удобная квалификация по долговечности необходима, но ее следует основывать на количественных показателях, выявление которых – одна из задач, стационарного исследования биогеоценозов и фации.

Разным эпифациям свойственна различная интенсивность динамических процессов. Они характеризуются разнообразием производных структур и разной скоростью их трансформации.

При обработке и систематизации полевых материалов может быть использована, наряду с другими приемами, теория графов, обеспечивающая наглядность и геометрический подход к пониманию динамического состояния геосистем. Построение графа осуществляется следующим образом: коренную фацию изображают в центре ряда сукцессии, как материнское ядро эпифации. Вершины графов обозначают переменные состояния фации (рис. ). Такой граф эпифации представляет в настоящее время наилучший способ информации о ее динамическом состоянии (Сачава, 1978).

Граф, отображающий структурно – динамические связи в пределах эпифации, должен строиться на основе хорошо обработанного и обобщенного материала полевых наблюдений.





Последнее изменение этой страницы: 2020-03-02; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.85.57.0 (0.014 с.)