Сущность и определение жизни 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сущность и определение жизни



 

Долгое время в науке существовало два основных подхода к решению вопроса о жизни – механицизм и витализм. Они приняли законченную форму в XIX веке в результате ожесточенных дискуссий между их представителями.

Механистический материализм, характерный для классической науки Нового времени, не признавал качественной специфики живых организмов и представлял жизненные процессы как результат действия химических и физических процессов. Поэтому механицизм отождествлял живые организмы со сложными машинами. Но такой подход неверен в самой своей основе, ведь аналогия между живым существом и машиной не объясняет причину целесообразности живого организма. Механицизм и его более поздняя разновидность – редукционизм, всякий раз беспомощно останавливались перед проблемой сущности жизни.

Противоположной точкой зрения стал витализм, который объяснял качественное отличие живого от неживого наличием в живых организмах особой «жизненной силы», отсутствующей в неживых предметах и не подчиняющейся физическим законам. Такое решение проблемы сущности жизни тесно связано с признанием факта творения ее Богом, разумным материальным началом и т.д.

К концу XX в. биологи стали намного больше знать о том, что такое жизнь, как она устроена, каковы ее существенные признаки. Тем не менее, современные предположения о сущности жизни во многом остаются гипотетичными. С этим связано отсутствие общепринятого определения жизни.

На обыденном уровне мы все интуитивно понимаем, что представляет собой живое, а что – неживое. Однако при попытке четко сформулировать определение жизни возникают большие трудности, так как сущность жизни понимается и определяется неоднозначно.

Большинство ученых убеждено, что жизнь представляет собой особую форму существования материального мира. До конца 1950-х годов в научной и философской литературе общепринятым было знаменитое определение Ф. Энгельса, в котором говорилось, что жизнь есть способ существования белковых тел, состоящий и постоянном самообновлении химических составных частей этого тела. Но постепенно стало очевидным, что субстратная основа жизни не сводиться только к белкам, а функциональная – к присущему белковым телам обмену веществ.

Также ученым удалось точно установить, что качественное отличие живого от неживого заключено в структуре их соединений, строении и связях, особенностях функций, характеристике и организации протекающих внутри организма процессов. Кроме того, жизнь отличается динамичностью и лабильностью. Но при этом можно говорить о полном тождестве химических элементов, входящих в состав живого и неживого.

На основании новых данных во второй половине XX в. появились новые определения жизни. Среди них – определение жизни как апериодического кристалла, данное Э. Шредингером.Интересно определение жизни как космической организованности материи Г. Югая. Существуют также определения, подчеркивающие энергетический аспект жизни – ее противостояние энтропийным процессам. А в определении канадского биолога Г. Селье жизнь понимается как процесс непрерывной адаптации организмов к постоянно изменяющимся условиям внешней и внутренней среды. При этом организм оказывается способным поддерживать стабильность всех своих структур и функций, не смотря на воздействие различных внешних факторов.

Современная биология в вопросе о сущности жизни все чаще идет по пути перечисления основных свойств живых организмов. Акцент делается на то, что только совокупность данных свойств может дать представление о специфике жизни. Таково определение жизни Б.М. Медникова. Он называет жизнью активное, идущее с затратой энергии поддержание и воспроизведение специфических структур, обладающих следующими свойствами: наличие генотипа и фенотипа; репликация генетических программ матричным способом; неизбежность ошибок на микроуровне при репликации, приводящих к мутациям; многократное усиление этих изменений в ходе формирования фенотипа и их селекция со стороны факторов внешней среды.

В этом определении акцент сделан на то, что жизнь связана с воспроизведением характерной для каждого вида упорядоченности. При этом организм воспроизводит себя и поддерживает свою целостность за счет использования элементов окружающей среды с более низкой упорядоченностью.

Для того чтобы понять сущность жизни, необходимо, прежде всего, установить, что такое живое и чем оно отличается от неживого. К числу свойств живого обычно относят следующие признаки:

• живые организмы характеризуются сложной упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах;

• живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно используют солнечную энергию;

• живые организмы активно реагируют на окружающую среду. Способность реагировать на внешнее раздражение – универсальное свойство всех живых существ, как растений, так и животных;

• живые организмы не только изменяются, но и усложняются;

• все живое размножается. Способность к самовоспроизведению – один из самых главных признаков жизни, так как в этом проявляется действие механизма наследственности и изменчивости, определяющих эволюцию всех видов живой природы;

• живые организмы передают потомкам заложенную в их генах информацию, необходимую для жизни, развития и размножения. Ген – единица наследственности, являющаяся мельчайшей внутриклеточной структурой. Генетический материал определяет направление развитие организма. Вот почему потомки похожи на родителей. Однако эта информация и процессе передачи несколько меняется, искажается, что делает потомков отличными от своих родителей;

• живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. В обобщенном и упрощенном варианте все отмеченное можно выразить в выводе, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе. Естественно, что все эти признаки должны быть отражены в определении жизни. Таким образом, можно предложить следующее определение: жизнь – высшая из природных форм движения материи, она характеризуется самообновлением, саморегуляцией и самовоспроизведением разноуровневых открытых систем, вещественную основу которых составляют белки, нуклеиновые кислоты и фосфорорганические соединения.

 

Появление жизни на Земле

 

История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты закладывались физические и химические условия, необходимые для появления и развития жизни.

Жизнь может существовать в достаточно узком диапазоне температур, давлений, радиации. Для ее появления нужны были материальные основы – химические элементы-органогены и в первую очередь углерод, так как именно он лежит в основе жизни. Этот элемент обладает рядом свойств, делающих его незаменимым для образования живых систем. Прежде всего, углерод способен создавать разнообразные органические соединения, число которых достигает нескольких десятков миллионов. Среди них – насыщенные водой, подвижные, низкоэлектропроводные, скрученные в цепи структуры. Соединения углерода с водородом, кислородом, азотом, фосфором, серой и железом обладают хорошими каталитическими, строительными, энергетическими, информационными и иными свойствами.

Наряду с углеродом к «кирпичикам» живого относятся кислород, водород и азот. Ведь живая клетка состоит на 70% из кислорода, углерода в ней 17%, водорода – 10, азота – 3%. Перечисленные элементы-органогены принадлежат к наиболее устойчивым и распространенным во Вселенной химическим элементам. Они легко соединяются между собой, вступают в реакции и обладают малым атомным весом. Их соединения легко растворяются в воде. Эти элементы, очевидно, поступили из космической пыли, которая стала материалом для сложения планет в Солнечной системе. Еще на стадии формирования планет возникли углеводороды, соединения азота, и в первичных атмосферах планет было много метана, аммиака, водяного пара и водорода. Они-то и стали сырьем для получения сложных органических веществ, входящих в состав живых белков и нуклеиновых кислот (аминокислот и нуклеотидов).

Огромную роль в появлении и функционировании живых организмов играет вода, ведь они на 90% состоят из нее. Поэтому вода выступает не только средой, но и обязательным участником всех биохимических процессов. Вода обеспечивает метаболизм клетки, терморегуляцию организмов. Кроме того, водная среда как уникальная по своим упругим свойствам структура позволяет всем определяющим жизнь молекулам реализовать свою пространственную организацию. Поэтому жизнь зародилась в воде, но даже выйди из моря на сушу, она сохранила внутри живой клетки океаническую среду.

Наша планета богата водой и расположена на таком расстоянии от Солнца, что необходимая для жизни основная масса воды находится в жидком, а не в твердом или газообразном состоянии, как на других планетах. На Земле поддерживается оптимальная температура для существования жизни, основанной на углероде.

Поскольку жизнь неразрывно связана со своего обитания, начало жизни следует изучать в тесной связи с теми космическими и геологическими процессами, в ходе которых образовалась и развивалась наша планета.

Завершение этапа космической эволюции Земли, в ходе которой она сложилась из планетезималий, произошло около 4,5 млрд. лет назад. После этого наша планета стала постепенно остывать, формируя кору, а также атмосферу и гидросферу за счет дегазации лав, выплавлявшихся из верхней мантии при интенсивном вулканизме. Есть достаточно доказательств, что при этом на поверхность Земли поступали пары воды и газообразные соединения углерода, серы и азота.

Первичная атмосфера Земли была очень тонкой, разреженной, атмосферное давление у поверхности не превышало 10 мм ртутного столба. По составу она была схожа с теми газами, которые «сбрасывались при извержении вулканов. Это подтверждает анализ пузырьков газа, обнаруженных в протоархейских породах (60% – углекислота, 40% – соединения серы, аммиака, метана, другие окислы углерода, а также пары воды). Первичная атмосфера не содержала свободного кислорода, поскольку его не содержали вулканические газы.

Воды первичного океана имели примерно такой же состав, как и сегодня, но в них так же, как и в атмосфере, отсутствовал свободный кислород. Таким образом, свободный кислород, а значит, и химический состав современной атмосферы, как и свободный кислород океанов Земли, не были первоначально заданы при рождении нашей планеты как небесного тела, а являются результатом жизнедеятельности первых живых организмов, составивших первичную биосферу Земли.

Под действием солнечных и космических лучей, проникавших через разреженную атмосферу, происходила ионизация, превращавшая атмосферу в холодную плазму. Поэтому атмосфера ранней Земли была насыщена электричеством, в ней вспыхивали частые разряды. В таких условиях шло быстрое и одновременное синтезирование разнообразных органических соединений, среди которых были и весьма сложные. Эти соединения, как и те, что попали на Землю в уже готовом виде из космоса, представляли собой подходящее сырье, из которого на следующей стадии эволюции могли образовываться аминокислоты и нуклеотиды.

Радиоактивный разогрев недр Земли пробудил тектоническую активность, заработали вулканы, выделявшие огромное количество вулканических газов. Это уплотнило атмосферу, отодвинув границу ионизации в верхние слои. При этом процесс образования органических соединений продолжался.

Частые грозы с длительными ливнями приносили эти элементы в водоемы, покрывавшие нашу планету, добавляя их к тем, что уже были растворены в них. Таким образом, были накоплены большие запасы органического сырья. По некоторым подсчетам, его масса оценивается в 1016 кг, что всего на 2-3 порядка меньше массы современной биосферы. Согласно расчетам, концентрация этого вещества в водах океана составляла 1%.

После того, как углеродистые соединения образовали «первичный бульон», могли уже организовываться биополимерьг – «аминокислоты и нуклеотиды, «кирпичики» белков и нуклеиновых кислот. Необходимая концентрация веществ для образования биополимеров могла возникнуть в результате осаждения органических соединений на минеральных частицах, например на глине или гидроокиси железа, образующих ил водоемов. Кроме того, органические вещества могли образовывать на поверхности океана тонкую пленку, которую ветер и волны гнали к берегу, где она собиралась в толстые слои. В химии известен также процесс объединения родственных молекул в разбавленных растворах.

Дальнейший этап биогенеза связан с концентрацией органических веществ и появлением протобионта – молекулы РНК в результате скачка, приведшего к образованию живого из неживого. Протобионты представляли собой системы органических веществ, покрытых оболочкой, способных взаимодействовать с окружающей средой, то есть расти и развиваться за счет поглощения из окружающей среды богатых энергией веществ, а также умеющих размножаться, передавая полезные признаки своим потомкам.

К сожалению, механизм перехода от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции предлагает лишь общую схему. В соответствии с ней между первичными сгустками органических веществ (коацерватов) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей стабильность данным сгусткам. Именно с появлением мембраны можно говорить о рождении клетки.

Все трудности, которые возникают у ученых при решении проблемы происхождения жизни, мы описали выше. Тем не менее, жизнь возникла и после этого стала развиваться быстрыми темпами, претерпевая изменения, а также меняя окружающую ее среду, весь облик нашей планеты.

 

 



Поделиться:


Последнее изменение этой страницы: 2019-10-31; просмотров: 160; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.0.157 (0.012 с.)