Кручение бруса с круглым поперечным сечением 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кручение бруса с круглым поперечным сечением



Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz, Qx, Qy, Mx, My равны нулю.

Для крутящего момента, независимо от формы поперечного се­чения бруса, принято следующее правило знаков. Если наблюда­тель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак.

При расчете бруса на кручение (вала) требуется решить две ос­новные задачи. Во-первых, необходимо определить напряжения, возникающие в брусе, и, во-вторых, надо найти угловые перемеще­ния сечений бруса в зависимости от величин внешних моментов.

Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, зало­женное в основу теории кручения, носит название гипотезы пло­ских сечений.

Рис. 4.1

Для построения эпюры крутящих моментов Mz применим тра­диционный метод сечений - на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов S Mz = 0, получим:

Mz = M. (4.1)

Поскольку сечение было выбрано произвольно, то можно сде­лать вывод, что уравнение (4.1) верно для любого сечения вала -крутящий момент Mz в данном случае постоянен по всей длине бруса.

Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами r и r+ d r выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол d j. При этом образующая цилиндра АВ повернется на угол g и займет положение АВ ¢. Дуга ¢ равна с одной стороны, r d j, а с другой стороны - g dz. Следовательно,

. (4.2)

Если разрезать образовавшуюся фигуру по образующей и раз­вернуть (рис. 4.1, г), то можно видеть, что угол g представляет со­бой не что иное, как угол сдвига данной цилиндрической поверх­ности под действием касательных напряжений t, вызванных дейст­вием крутящего момента. Обозначая

, (4.3)

где Q - относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к рас­стоянию между ними. Величина Q аналогична относительному уд­линению при простом растяжении или сжатии стержня.

Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:

g = rQ. (4.4)

Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:

t = G Qr, (4.5)

где t - касательные напряжения в поперечном сечении бруса. Пар­ные им напряжения возникают в продольных плоскостях - в осе­вых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений. Момент относительно оси z от дей­ствия касательных напряжений t на элементарной площадке dF равен (рис. 4.2):

dM = tr dF.

Рис. 4.2

Проинтегрировав это выражение по площади поперечного сечения вала, получим:

. (4.6)

Из совместного рассмотрения (4.5) и (4.6) получим:

. (4.7)

Откуда

. (4.8)

Величина GI r называется жесткостью бруса при кручении.

Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:

. (4.9)

Если крутящий момент Mz и жесткость GI r по длине бруса пос­тоянны, то из (4.9) получим:

, (4.10)

где j(0) - угол закручивания сечения в начале системы отсчета.

Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него q, согласно (4.8), получим:

t(r)= . (4.11)

Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:

(4.12)

Если же в брусе имеется внутренняя центральная полость ра­диусом r = , то для кольца

, (4.13)

где с = .

Изгиб (поперечный)

# Построение эпюра: - нормальных

                                - касательных

  Построение эпюры нормальных напряжений в поперечном сечении балки

Задача

Построить эпюру распределения нормальных напряжений для подобранного ранее прямоугольного сечения двухопорной балки с размерами h=155мм и b=80мм.

Изгибающий момент в опасном сечении балки Mx max=47,6кНм.

Пример решения

Предыдущие пункты решения задачи:

1. Определение опорных реакций,

2. Построение эпюр поперечных сил и изгибающих моментов,

3. Подбор размеров прямоугольного сечения балки.

Рассмотрим пример построения эпюры распределения нормальных напряжений в опасном сечении балки.

Прямоугольное сечение имеет три характерных точки:

1 – верхняя,

2 – центр тяжести (середина высоты),

3 – самая нижняя точка.

Для построения эпюры достаточно найти значения в любых двух точках, потому что при изгибе нормальная составляющая полных напряжений по высоте сечения меняется линейно.

где Ix – осевой момент инерции сечения,
y – расстояние от оси х проходящей через центр тяжести сечения до точки в которой рассчитывается напряжение.

Очевидно, что на самой оси x (точка №2) где координата y=0 напряжения отсутствуют.

Наибольшие значения нормальных напряжений будут на максимальном удалении от оси x, то есть при ymax=h/2 (в точках 1 и 3).

Рассчитаем момент инерции прямоугольного сечения

Тогда максимальные напряжения

При изгибе верхний и нижний слой балки испытывают продольную деформацию разных знаков.

Знаки напряжений в точках 1 и 3 определяются по построенной ранее эпюре изгибающих моментов Mx.

В данном случае по ней видно, что в опасном сечении балки эпюра моментов имеет положительное значение (+47,6 кНм), что согласно правила знаков при изгибе говорит о том, что в рассматриваемом месте балки сжимаются верхние слои (нижние соответственно растягиваются).

Поэтому в соответствии с правилом знаков для напряжений, нормальные напряжения в верхней точке 1 будут отрицательны (потому что сжатие), а в точке 3 – положительны (растяжение) или σт1=-148,6МПа, σт3=148,6МПа.

По полученным данным строим эпюру.



Поделиться:


Последнее изменение этой страницы: 2019-12-25; просмотров: 269; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.177.119 (0.021 с.)