Поколения компьютерных томографов: от первого до четвёртого 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Поколения компьютерных томографов: от первого до четвёртого



Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

Во 2-ом поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-ое поколение имеет 1088 люминесцентных датчика, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

§

§

§ 1974: Манёвр Хеймлиха (процедура оказания экстренной помощи, используемая для удаления инородных тел из дыхательных путей пациентов, подавившихся едой)

1976: Первый коммерческий позитронно-эмиссионный томограф.      

 Позитро́нно-эмиссио́нная томогра́фия (позитронная эмиссионная томография, сокращ. ПЭТ), она же двухфотонная эмиссионная томография —радионуклидный томографический метод исследования внутренних органов человека или животного. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием.

Позитронно-эмиссионная томография — это развивающийся диагностический и исследовательский метод ядерной медицины. В основе этого метода лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами. Потенциал ПЭТ в значительной степени определяется арсеналом доступных меченых соединений — радиофармпрепаратов (РФП). Именно выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

На сегодняшний день в ПЭТ в основном применяются позитрон-излучающие изотопы элементов второго периода периодической системы:

§ углерод-11 (T ½= 20,4 мин.)

§ азот-13 (T ½=9,96 мин.)

§ кислород-15 (T ½=2,03 мин.)

§ фтор-18 (T ½=109,8 мин.)

Фтор-18 обладает оптимальными характеристиками для использования в ПЭТ: наибольшим периодом полураспада и наименьшей энергией излучения. С одной стороны, относительно небольшой период полураспада фтора-18 позволяет получать ПЭТ-изображения высокой контрастности при низкой дозовой нагрузке на пациентов. Низкая энергия позитронного излучения обеспечивает высокое пространственное разрешение ПЭТ-изображений. С другой стороны, период полураспада фтора-18 достаточно велик, чтобы обеспечить возможность транспортировки РФП на основе фтора-18 из централизованного места производства в клиники и институты, имеющие ПЭТ-сканеры (т. н. концепция сателлитов), а также расширить временны́е границы ПЭТ-исследований и синтеза РФП.

Компания Siemens AG в своих ПЭТ/КТ устройствах применяет сцинтилляционные детекторы на основе монокристаллов оксиортосиликата лютеция (Lu2SiO5, LSO).

Изобретатели: Майкл Тер- Погосян совместно с Дж. Эуджен-Робинсон, К. Шарп Кук[1].

§

§

1978: Грэм Кларк установил первый кохлеарный имплантат

. Кохлеарный имплантат — медицинский прибор, позволяющий частично или полностью восстановить слух некоторым пациентам с выраженной или тяжёлой потерей слуха сенсоневральной этиологии.

Теоретические основания

В России насчитывается около 12 миллионов человек с нарушениями слуха. Части из них для восстановления слуха достаточно обычных слуховых аппаратов, но в ряде случаев их применение не эффективно. Способом восстановления функции органа является кохлеарная имплантация

Данная методика представляет собой хирургическую операцию направленную на восстановление слуха. Сущность метода заключается в установке в организме пациента устройства способного преобразовывать электрические импульсы поступающие с внешнего микрофона в сигналы понятные нервной системе. Однако следует понимать, что сразу после имплантации слух не вернется, требуется длительный период реабилитации, в течение которого организм под руководством специалистов адаптируется к имплантату.

Кохлеарный имплантат представляет собой медицинское устройство, состоящее из микрофона, звукового процессора и передатчика, которые устанавливаются снаружи, на волосах или коже больного, а также приёмника, имплантируемого подкожно, и цепочки электродов, введённых внутрь улитки посредством хирургической операции. Функция кохлеарного имплантата заключается в стимуляции электрическими импульсами волокон слухового нерва в улитке.

Базилярная мембрана (лат. lamina basilaris) слуховой улитки (лат. cochlea) имеет тонотопическую организацию: низкие частоты проникают глубже и вызывают резонансные колебания частей мембраны, более близких к её основанию, а высокие частоты обладают меньшей проникающей способностью и вызывают резонанс более дистальных частей мембраны, ближе к овальному окну. Колебания волосковых клеток (англ. hairy cells) улитки, расположенных на мембране, способствуют образованию электрических импульсов, возбуждающих соответствующие волокна слухового нерва. При этом каждое волокно передаёт в мозг свою часть информации о звуках окружающего мира — свой узкий диапазон частот.

У пациентов с нейросенсорной (сенсоневральной) тугоухостью количество волосковых клеток уменьшается, либо некоторые из них повреждены, и потому не способны вырабатывать правильные электрические сигналы. При сравнительно небольшом снижении количества здоровых волосковых клеток такой пациент может получать более или менее удовлетворительную компенсацию потери слуха путём усиления звуковых сигналов, поступающих в ухо (с помощью слухового аппарата или различных приспособлений в виде специальных насадок на телефон и т. д.). Однако при сильном уменьшении количества волосковых клеток или полной их гибели никакое усиление не способно помочь такому пациенту слышать и, что ещё более важно, понимать речь. При длительном периоде нейросенсорной тугоухости частично атрофируются веточки даже изначально здорового слухового нерва, поскольку они не получают необходимой стимуляции электрическими сигналами от волосковых клеток. Иначе говоря, нейросенсорная (сенсоневральная) тугоухость имеет тенденцию прогрессировать со временем.

В связи с этим ещё в 60-х годах XX века родилась идея попытаться решить проблемы пациентов с нейросенсорной тугоухостью, передавая звуковую информацию в виде электрических сигналов, приходящих непосредственно к слуховому нерву, минуя повреждённые или погибшие волосковые клетки улитки.

Принцип работы

Кохлеарный имплантат состоит из внешней (носимой) и внутренней (имплантируемой) части.

Во внешней части находятся:

§ Микрофон

§ Микропроцессор для преобразования звука в электрические имплульсы

§ Радиопередатчик

Звуковой процессор – это электронное устройство, функция которого заключается в улавливании звуков от микрофона, кодировании их в последовательные электрические импульсы и передаче этих импульсов через катушку (антенну) непосредственно на кохлеарный имплантат.

Имплантируемая часть содержит:

§ Радиоприёмник

§ Дешифратор сигналов

§ Цепочку электродов, которые вживляются в улитку

Цепочка электродов — самая сложная часть имплантата. Она представляет собой тончайшую гибкую спиралеобразную трубочку, повторяющую естественную анатомическую форму улитки, с тонкими волосками электродов по всей длине спирали. Материал трубочки химически и биологически инертен, не отторгается организмом и обладает свойствами хорошего электроизолятора (силикон). Электроды изготовлены из платины — металла с высокой электропроводностью, характеризующегося биологической и химической инертностью. Система электродов покоится на базилярной мембране улитки и непосредственно контактирует с веточками слухового нерва, иннервирующими те или иные участки базилярной мембраны. Первые имплантаты имели всего один электрод, в современных (на 2005 г.) моделях используется от 8 до 24 электродов.

Таким образом, кохлеарный имплантат решает проблему повреждённых или погибших волосковых клеток улитки, передавая информацию о звуках окружающего мира по системе электродов непосредственно к слуховому нерву. При этом современные кохлеарные имплантаты стремятся максимально точно (насколько это вообще возможно при существующих технических ограничениях) воспроизвести естественную физиологическую систему кодирования информации о громкости, тональности и прочих характеристиках звука.

Звуки улавливаются микрофоном и преобразуются в электрические сигналы, которые, попадая в звуковой процессор, "кодируются" (превращаются в пакет электрических импульсов). Эти импульсы пересылаются на катушку передатчика и посредством радиоволн через неповрежденную кожу передаются в имплантат. Последний посылает пакеты электрических импульсов на электроды, локализованные в улитке. Слуховой нерв собирает эти слабые электрические сигналы и передает их в мозг. И, наконец, головной мозг распознает эти сигналы как звуки.

Ограничения

Кохлеарный имплантат  неэффективен, если глухота  вызвана не повреждением или гибелью волосковых  клеток улитки, а поражением  самого слухового нерва или центральных отделов слухового анализатора, локализованных в стволе  мозга и височных долях коры больших полушарий. Это может быть потеря слуха вследствие неврита слухового нерва или из-за кровоизлияния в мозг, которое задело слуховые центры коры.

Кохлеарный имплантат также малоэффективен или вовсе бесполезен в случаях, когда улитка подвергается кальцификации или оссификации — отложению солей кальция или прорастанию кости. Это мешает введению электродов в улитку и повышает вероятность неудачной операции.

 

Наиболее эффективны кохлеарные имплантаты у больных с относительно недавно возникшей тяжёлой нейросенсорной потерей слуха или с недавним прогрессированием тугоухости, которые ранее успешно пользовались слуховым аппаратом и получали от него адекватную компенсацию (или имели «предысторию» нормального слуха), более или менее социально и профессионально адаптированных, говорящих. У детей, глухих от рождения или оглохших в раннем детстве, кохлеарный имплантат тем эффективнее, чем раньше проведена операция.

Возможные осложнения

К редким, но возможным осложнениям операции кохлеарной имплантации относятся:

§ паралич или парез (повреждение) лицевого нерва на стороне операции;

§ нарушение вкуса;

§ вестибулярные нарушения (головокружение, неустойчивость походки, тошнота, рвота);

§ головные боли;

§ шум в ушах;

§ оссификация или кальцификация улитки вместе с вживлённым в неё имплантатом.

§

§

1978: Последний смертный случай от натуральной оспы.

Натура́льная о́спа (лат. Variola, Variola vera) или, как её ещё называли ранее, чёрная оспа — высококонтагиозная (заразная) вирусная инфекция, которой страдают только люди. Её вызывают два вида вирусов: Variola major (смертность 20—40 %, по некоторым данным — до 90 %) и Variola minor (смертность 1—3 %), которые относятся семейству Poxviridae, подсемейства Chordopoxviridae, рода Orthopoxvirus. Люди, выживающие после оспы, могут частично или полностью терять зрение, и практически всегда на коже остаются многочисленные рубцы в местах бывших язв.

Лечение

Долгое время эффективные средства лечения натуральной оспы отсутствовали, зато широко применялись магические приёмы: например, больных до начала высыпаний одевали в красную одежду, чтобы «выманить» оспу наружу.

В настоящее время для лечения данного заболевания применяются противовирусные препараты (метисазон по 0,6 г 2 раза в день курсом 5—6 сут.), противооспенный иммуноглобулин 3—6 мл внутримышечно. Для профилактики присоединения бактериальной инфекции на пораженные участки кожи наносятся антисептические препараты. При наличии бактериальных осложнений больным назначаются антибиотики широкого спектра действия (полусинтетические пенициллины, макролиды, цефалоспорины). Проводятся мероприятия, направленные на детоксикацию организма, к ним относятся введение коллоидных и кристаллоидных растворов, в некоторых случаях проводится ультрафильтрация и плазмаферез.

В конце XIX века доктор В. О. Губерт предложил лечение оспы путем ежедневных повторных прививок противооспенной вакцины уже зараженным людям, как до появления симптомов болезни, так и во время ее течения. В результате данного лечения удавалось значительно смягчить течение заболевания, сделав его менее тяжёлым. Неизвестно, почему усиленные прививки не вошли в широкое употребление.



Поделиться:


Последнее изменение этой страницы: 2019-12-15; просмотров: 114; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.215.77.96 (0.029 с.)