Однородное, линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Однородное, линейное дифференциальное уравнение второго порядка с постоянными коэффициентами.



При его решение

                             

                                             

Где :        

Коэффициент, определяющий быстроту изменения амплитуды, называется коэффициентом затухания

 

 

ДЕКРЕМЕНТ ЗАТУХАНИЯ- количественная хар-ка быстроты затухания колебаний

 

ДОБРОТНОСТЬ- колебательной системы, характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает их амплитуду вдали от резонанса. Чем выше добротность системы, тем меньше потери энергии в ней за период

Логарифмический декремент связан с другой важной характеристикой колебаний - добротностью q следующим соотношением:

 

 

16. Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

                                                                                                    

где F0 - амплитудное значение действующей силы;

w - частота вынуждающей силы.

 

                                                                                             4

где F1 - возвращающая сила, F = - kx;

F2 - сила сопротивления, F = - rv (при малых значениях v);

F3 - вынуждающая сила, F = F0×sinw2t.

 

 

Неоднородное, линейное, дифференциальное, второго порядка с постоянными коэффициентами.

 Общее решение неоднородного уравнения равно сумме общего решения однородного и частного решения неоднородного.

 

ОН=ОО+ЧН

ОО

где

 

Найдем частное решение неоднородного дифференциального уравнения по виду правой части:

x2=a cos(wt-j)

a-?

j-?

 

 

Частное решение неоднородного уравнения ЧН

 

 

 

А его общее решение будет таким:

 

С течением времени t e-bt®0 и первое слагаемое ®0 и общее решение становится равным второму слагаемому – установившиеся колебания  

                                      

Анализ:

 

1. гармонические колебания происходят с частотой w равной частоте вынуждающей силы

2. амплитуда вынужденных колебаний зависит от амплитуды  вынуждающей силы,

3. параметров колебательной системы , свойств среды .

4.  и соотношение частот вынуждающей силы и собственной частоты

5. фаза вынужденных колебаний отстает от фазы вынуждающей силы на

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.

А вот выражение

Представляет собой точку максимума амплитуды вынужденных колебаний – резонанс

 

Если затухание в среде мало  то

Подставив в выражение для амплитуды вынужденных колебаний

резонансную частоту

 

Получим выражение для амплитуды колебаний при резонансе:

 

 

    18. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Процесс распространения колебаний в пространстве.

Распространение колебаний в пространстве происходит благодаря взаимодействию между частицами упругой среды. Волна в отличие от колебаний характеризуется не только периодичностью во времени, но и периодичностью в пространстве. Частицы среды при этом не переносятся волной, они лишь совершают колебания около своих положений равновесия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества в пространстве. Среди разнообразия волн, встречающихся в природе и технике, выделяют упругие, на поверхности жидкости и электромагнитные.

Упругими (или механическими) волнами называются механические возмущения, возникающие и распространяющиеся в упругой среде. К упругим волнам относятся звуковые и сейсмические волны; к электромагнитным – радиоволны, свет и рентгеновские лучи.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны различают продольные и поперечные волны.

Продольные – это волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – это волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.

В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому упругие деформации в них могут распространяться только в виде продольных волн (“волны сжатия”).

В твердых телах, в которых упругие силы возникают при сдвиге, упругие деформации могут распространяться не только в виде продольных, но и в виде поперечных волн (“волны сдвига”). В твердых телах ограниченного размера (например, в стержнях и пластинах) картина распространения волны более сложна: здесь возникают еще и другие типы волн, являющиеся комбинацией первых двух основных типов.

В электромагнитных волнах направления электрического и магнитного полей почти всегда перпендикулярны направлению распространения волны, (за исключением случаев анизотропных сред и распространения в несвободном пространстве) поэтому электромагнитные волны в свободном пространстве поперечны.

Волны могут иметь различную форму. Одиночной волной, или импульсом, называется сравнительно короткое возмущение, не имеющее регулярного характера. Ограниченный ряд повторяющихся возмущений называется цугом волн.

Гармоническая волнабесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса. Такие возмущения могут распространяться в однородной среде (если их амплитуда невелика) без искажения формы.

Геометрическое место точек, до которых доходят волны за некоторый промежуток времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновых поверхностей существует бесконечное множество, в то время, как волновой фронт в каждый момент времени только один. Волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одинаковой фазе). Волновой фронт все время перемещается. Волновые поверхности могут иметь различную геометрию. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, а в сферической волне - систему концентрических сферических поверхностей.

 

 

19. Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Дифракция первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных максимумов

Дифракция волн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Дифракция волн может проявляться:

в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;в разложении волн по их частотному спектру;

· в преобразовании поляризации волн;

· в изменении фазовой структуры волн.

 

Бегущая волна — волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью (постоянной для однородной среды). С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик процесса.

Бегущая волна - волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны). Примеры: упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе[2].

Бегущая волна — волновое возмущение, изменяющееся во времени и пространстве согласно выражению

где — амплитудная огибающая волны, — волновое число и — фаза колебаний. Фазовая скорость этой волны даётся выражением

где — это длина волны.

Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе

Фазовая скорость - это скорость распространения данной фазы колебаний, т.е. скорость волны.

Связь длины волны , фазовой скорости и периода колебаний Т задается соотношением:

.

Учитывая, что , где - линейная частота волны, - период, а циклическая частота волны , получим разные формулы для фазовой скорости:

.

Для волнового процесса характерна периодичность по времени и по пространству.

Т – период колебаний точек среды. Роль пространственного периода играет длина волны . Соотношение между периодом и циклической частотой задается формулой: . Аналогичное соотношение можно записать для длины волны и величиной k, называемой волновым числом: .

 

Длина волны – расстояние λ, на которое распространяется волна за время, равное периоду колебаний частиц среды в волне.

 

 

Волновое число́ (также называемое пространственной частотой) — это отношение 2 π радиан к длине волны:

 

· Волновое число есть разность фазы волны (в радианах) в один и тот же момент времени в пространственных точках на расстоянии единицы длины (одного метра).

· Волновое число есть количество пространственных периодов (горбов) волны, приходящееся на 1 метр.

· Волновое число равно числу периодов волны, укладывающихся в отрезок 2 π метров.

Волновой вектор — вектор, направление которого перпендикулярно фазовому фронту бегущей волны, а абсолютное значение равно волновому числу.

Волновой вектор обычно обозначается латинской буквой и величина его измеряется в обратных метрах (СИ) или обратных сантиметрах (СГС) (т.е. радианах на метр или радианах на сантиметр). (Следует быть внимательным, т.к. иногда может использоваться определение, отличающееся множителем , но дающее ту же физическую размерность).

Волновое число связано с длиной волны λ соотношением:

.

Связь между волновым вектором и частотой задаётся законом дисперсии. Все возможные значения волновых векторов образуют обратное пространство или k-пространство.

Наиболее общим определением волнового вектора можно считать такое: волновой вектор есть градиент фазы волны:



Поделиться:


Последнее изменение этой страницы: 2019-12-15; просмотров: 195; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.57.9 (0.045 с.)