Касательная, нормаль к кривой 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Касательная, нормаль к кривой



Как построить касательную к кривой?

Для построения используем прямые, называемые секущими.

Прямая, пересекающая кривую линию в одной, двух и более точках, называется секущей (АВ).

Чтобы через точку А провести касательную t к кривой m, в окрестности точки А (недалеко) выбирают точку В и проводят секущую АВ. Приближая точку В к точке А в пределе получают касательную t в данной точке.

В ® А Þ АВ ® t

Рис. 1-49

Касательную (t в точке А) можно рассматривать как предельное положение секущей, которое занимает последняя при сближении точек пересечения А и В секущей АВ до слияния их в одну точку.

n - нормаль кривой линии в данной точке, n ^ t. Сколько их можно провести? К пространственной кривой можно провести n ® ¥, т.е. к касательной можно построить плоскость, нормальную к ней. Если кривая - плоская, то к касательной можно провести только одну нормаль.

Рассмотренная точка А, у которой только одна касательная и одна нормаль, называется обыкновенной точкой кривой. Если вся кривая состоит из обыкновенных точек, то она называется регулярной (гладкой, плавной).

У регулярной плоской кривой (рис. 1-50) в каждой точке А, В, С, D, Е к касательной можно провести только одну нормаль, поэтому все точки являются обыкновенными(монотонными). Характеристикой плавной кривой может быть и угол наклона касательных относительно оси Х, который в данном случае меняется плавно.

Рис. 1-50

 

Особые точки кривых линий

Точку кривой называют особой (нерегулярной), если положение или направление касательной в этой точке определено неоднозначно. К особым (нерегулярным) относятся:

Точки узловые (самопересечения)

Точки возврата первого рода

Точки возврата второго рода (клюв)

Точки самосоприкосновения

Точки угловые (точки излома)

 

Свойства проекций кривых линий

Свойства кривых линий и их проекций позволяют наглядно демонстрировать физические, химические, электрические процессы. В геометрии кривые линии - это линии пересечения поверхностей.

 

Рис. 1-52

1. Проекцией кривой линии является кривая линия (в общем случае).

2. Касательная к кривой проецируется в касательную к ее проекции.

3. Несобственная точка кривой проецируется в несобственную точку ее проекции.

4. Порядок кривой (только для алгебраических кривых) в проекциях не изменяется.

5. Число точек пересечения кривой сохраняется при проецировании.

 

Некоторые плоские кривые линии

Эллипс, парабола, гипербола - алгебраические кривые второго порядка определяются уравнением f (х,у) = 0.

Эллипс

АВ = 2а - большая ось эллипса

CD = 2в - малая ось эллипса

О - центр эллипса

F1; F2 - фокусы эллипса

А,В,С,D - вершины эллипса

Точки M и N - любые точки эллипса

| MF1 | + | MF2 | = | NF1 | + | NF2 | = АВ - Const

Рис. 1-53

Эллипс - это все множество точек, сумма расстояний от каждой из которых до двух данных точек (фокусов) есть величина постоянная, равная 2 а.

У эллипса все точки собственные. Кривая симметрична относительно обеих осей. Всегда можно подобрать такую пару диаметров эллипса, что: хорды, параллельные одному диаметру, делятся другим диаметром пополам, такие диаметры называются сопряженными.

Графически можно построить любую точку эллипса, если заданы его оси. Эллипс на рис. 1-54 построен равномерным сжатием окружности в направлении ОС ^ ОА

 

АВ - большая ось

СD - малая ось

Разделить окружности на 12 равных частей

Из точек пересечения любого луча с окружностями провести прямые, параллельные осям эллипса:

из точки 1 || СD, из точки 2 || АВ.

Рис. 1-54

 

Парабола

Парабола обладает одной осью и имеет две вершины: О - собственная точка и S ¥ - несобственная точка (парабола имеет одну несобственную точку), F - фокус и Р - параметр параболы

Парабола - это все множество точек, равноудаленных от прямой d (директрисы) и данной точки F (фокуса)

Рис. 1-55

Если требуется построить параболу по заданной вершине О, оси Х и точки М, то строится прямоугольный треугольник - ОАМ (рис. 1-56)

Рис. 1-56

 

Гипербола

Гипербола - разомкнутая кривая, состоящая из двух симметричных ветвей; она имеет две оси симметрии - действительную (ось - х) и мнимую (ось - у). Асимптоты - это прямые, к которым ветви гиперболы неограниченно приближаются при удалении в бесконечность (рис. 1-57).

Рис. 1-57

Точки А и В - вершины гиперболы.

F1 и F2 - фокусы гиперболы

| MF1 | - | MF | = | NF1 | - | NF2 | = const = 2 a

Расстояние между F1 и F2 равняется сумме (а2 + в2)

Гипербола - это все множество точек, разность расстояний от каждой из которых до двух данных точек (фокусов) есть величина постоянная, равная 2 а.

Построение гиперболы, если заданы вершины А и В и фокусы F1 и F2.

Рис. 1-58

Точки - 1, 2, 3, 4, 5 - ряд произвольно взятых точек. Из фокусов F1 и F2, как из центров, проводят дуги, радиусами которых служат расстояния от вершин А и В до точек 1, 2, 3, 4, 5 и т.д.. (рис. 1-59) R2 = В1, В2, В3, В4, В5 R = А1, А2, А3, А4, А5

Рис. 1-59

 

Эвольвента

Эвольвента (развертка окружности)- эта лекальная кривая широко применяется в технике. Например, форма боковой поверхности зуба зубчатых передач, называемая профилем зуба, очерчивается по эвольвенте.

Рис. 1-60

Алгоритм построения

1. Окружность разделить на 12 частей.

2. В точках деления провести касательные к окружности направленные в одну сторону

3. На касательной, проведенной через последнюю точку, откладывают отрезок равный, 2 pR, и делят на 12 частей.

5. На первой касательной откладывают 1/12 отрезка на второй 2/12 и т.д.

 

 



Поделиться:


Последнее изменение этой страницы: 2019-11-02; просмотров: 546; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.234.55.154 (0.012 с.)