Мои первые опыты с дельфинами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мои первые опыты с дельфинами



Все мысли о китах хранились у меня где-то в подсоз нании до Международного физиологического конгресса, состоявшегося в 1953 году в Монреале (Канада). Здесь я снова встретил Пера Шоландера, и мы опять долго говорили о китах, и в частности о мозге этих животных. На этот раз он сообщил мне имя одного специалиста в Маринлэнде и посоветовал с ним связаться. Тогда я об ратился к д-ру Ежи Розе с предложением поехать в Маринлэнд, чтобы там выполнить на дельфинах некоторые нейрофизиологические исследования. Др Розе, д-р Клинтон Булей, давно мечтавший провести сравнительные нейрофизиолого-анатомические исследования на большой группе млекопитающих, и еще ряд ученых объединились и организовали экспедицию. Осенью 1955 года восемь будущих участников этой экспедиции съехались в Маринлэнд со всех концов Соединенных Штатов. Имущество пяти нейрофизиологических лабораторий было свезено в исследовательскую лабораторию Морской студии и передано на попечение куратора Ф. Дж. Вуда.

Каждый из нас имел некоторый опыт в проведении нейрофизиологических исследований на мозге различных животных, в том числе на кошках, собаках, свиньях, овцах, шимпанзе, крысах и мартышках. У всех этих видов животных была довольно подробно изучена кора головного мозга и установлены границы зрительной, слуховой, тактильной и двигательной областей; к последней относятся те участки коры, которые управляют движением. В наши намерения входило установить границы этих и всех других (которые удастся обнаружить) областей в мозге дельфина. Мы располагали необходимой электронной аппаратурой для раздражения мозга, а также определенных органов чувств (глаз, ушей, кожи и т. п.) и для регистрации электрических потенциалов, возникающих в мозге. В нашем распоряжении имелось такое количество различных наркотизирующих средств, что мы могли бы, кажется, усыпить весь Маринлэнд и все равно не исчерпали бы всех своих запасов. Мне поручили сконструировать для дельфинов респиратор (аппарат для искусственного дыхания), и я погрузил в свою машину прибор весом 60 килограммов вместе со всем нашим электронным оборудованием. Единственным пособием служила мне статья Пера Шоландера [10], опубликованная еще в 1941 г., из которой я узнал, как эти животные дышат, какой объем воздуха они вдыхают и каков механизм их дыхания. В ней сообщалось, например, что дельфины задерживают дыхание на вдохе, имеют чрезвычайно короткий выдох, сразу же сменяю щийся вдохом, и вдыхают 5-10 литров воздуха за очень короткое время (мы совершенно не представляли себе, насколько оно мало, до тех пор, пока не провели скоростной киносъемки). Я не знал, как мы будем прилаживать респиратор к животному, но предполагал, что, пожалуй, следует скопировать тип дыхания дельфинов, чтобы избежать проблем, связанных с аноксией (нехваткой кислорода) и накоплением углекислого газа. Я спроектировал и построил аппарат, который крайне быстро нагнетал в легкие животного 5-10 литров воздуха, имитируя тип дыхания с резким повышением «давления» при вдохе. Аппарат позволял также очень быстро изгонять воздух из легких; для этого в нем имелся особый клапан, открывающийся как раз перед заполнением легких. В то время мы еще не имели воз можности точно определить, сколько воздуха введено в легкие животного, однако позднее мы обнаружили очень простой способ, позволяющий вводить в легкие нужное количество воздуха.

Во время самой экспедиции мы справились и с другой трудностью, найдя удобный способ для подключения респиратора. Однажды это нас очень выручило, ибо только благодаря респиратору нам удалось вернуть к жизни животное, бывшее на грани гибели.

Персонал Морской студии предоставил в наше распоряжение пять дельфинов. Мы дали себе срок в две недели на составление карты гигантского дельфиньего мозга.

Первый эксперимент мы спланировали таким образом, как если бы собирались исследовать мозг какогонибудь очередного примата, например шимпанзе. Мы рассчитали дозу наркотического препарата, достаточную, чтобы обездвижить дельфина на несколько часов для операции, в течение которой надо было снять крышу черепа и путем нанесения электрических раздражений составить карту мозга животного. Такой подход мог, разумеется, оказаться и неудачным, но именно так мы привыкли работать.

Дельфина вынули из воды и поместили в станок. Д-р Вулси ввел ему рассчитанную дозу наркотического препарата — нембутала. Эта доза — 30 миллиграммов на килограмм веса — была лишь чуть меньше той, какая обычно применяется для приматов, так что животное должно было погрузиться в глубокий сон. Все 80 кубических сантиметров нембутала были введены в брюшную полость животного в один прием.

Последующие полчаса оказались для всех нас чрез вычайно мучительными. Дыхание дельфина становилось все реже и реже, и наконец сердце его остановилось. На экране электронно-лучевого осциллографа (прибора для регистрации быстрых электрических колебаний) мы наблюдали электрические потенциалы сердечной мышцы, отводимые с помощью электродов, наложенных на груд ную клетку. За дыханием животного следили одновременно три или четыре человека. Животное погибло не сразу; оно на наших глазах прошло через все фазы смерти от аноксии, о которой все мы, разумеется, слышали, но которую сами ни разу не наблюдали. Это было обескураживающее открытие, неожиданное для всех присутствующих. Трудно было сразу оценить его и связать с нашими прежними представлениями. Некоторые из нас были убеждены, что смерть дельфина наступила от наркоза вследствие нарушения дыхания. Однако другим такое объяснение казалось неправдоподобным. Все животные, на которых мы работали прежде, довольно легко без всяких нарушений дыхания переносили такую дозу наркотического препарата; 99 % из них выдерживали длительный наркоз, и он не причинял им никакого вреда. Даже при операциях на мозге человека применяли еще более глубокий наркоз без каких-либо вредных последствий. Поэтому мы решили продолжить работу с дельфинами и попытаться подобрать такие дозы наркотического препарата, при которых дыхание животного не нарушалось бы.

Для следующего животного мы уменьшили дозу нем-1 бутала до 10 миллиграммов на килограмм веса в надежде, что это поможет нам выяснить истинную причину гибели первого дельфина. При таком наркозе дельфин мог еще видеть нас, следить за нами глазами, подпрыгивал, когда его внезапно начинали гладить по «подбородку», и закрывал глаза, когда перед ним быстро махали рукой. Единственное изменение состояло в том, что постепенно у него нарушалась нормальная связь между вдохом и выдохом.

Обычно дыхательный цикл начинается с выдоха, за которым сразу же следует вдох. При дозе 10,3 миллиграмма нембутала на килограмм веса мы заметили, что воздух из легких выходил не через дыхало, а через рот и что если весь воздух выходил из легких животного, то оно вообще переставало дышать, не будучи в состоянии начать с вдоха.

В то время мы еще не умели определить, откуда идет воздух, который, как мы видели, выходил через рот, — действительно ли из легких или из желудка. В какой-то момент мы почувствовали запах рыбы, что как будто свидетельствовало в пользу второй возможности.

При дозе нембутала 10,3 миллиграмма на килограмм веса дыхание у животного тоже в конечном счете прекратилось.

Необходимо помнить, конечно, что животное было извлечено из воды, что тяжесть его собственного веса давила на его легкие и что самый тип дыхания, которое еще могло при этом поддерживаться в течение определенного времени, становился механически регулярным, что (как мы установили позже) совершенно противоесте ственно для дельфинов. По-видимому, остановка дыхания и выход воздуха через рот вызывались двумя причинами: расслаблением мышечного кольца вокруг гортани (носоглоточного сфинктера, см. Приложение 1) и повышением давления воздуха в легких из-за упомянутого сдавливания легких, чего не бывает в воде.

Чтобы научиться оживлять дельфинов, нам прежде всего следовало тщательно изучить строение их дыхательных путей. С этой целью мы провели два вскрытия на трупе дельфина, который нам удалось раздобыть в Балтиморе, и на первом погибшем у нас животном. Были рассмотрены три возможных способа введения животному трубки от респиратора: через дыхало, что трудно осуществимо из-за костной перегородки, которая делит дыхало пополам несколько ниже его на ружного края; через рот, для чего требовалось вытянуть гортань из носоглоточного сфинктера и ввести через нее в трахею трубку от респиратора, и, наконец, через наружный разрез трахеи (путем трахеотомии). Мы быстро убедились, что трахея чрезвычайно коротка и очень широка, а это крайне затрудняет введение в нее со стороны шеи и укрепление достаточно большой трубки без сколько-нибудь серьезных повреждений.

Второй способ (через рот) казался единственно возможным.

Надо было также тщательно подобрать диаметр трубки, так как трубка должна плотно входить в гортань. Это выяснилось, когда мы попробовали оживить одного дельфина, после того как у него остановилось дыхание. Двое сильных мужчин раскрыли ему рот с помощью веревочных петель, надетых на верхнюю и нижнюю челюсти; третий вставил в рот деревянный брусок, который не давал челюстям сомкнуться, а д-р Маунткасл, засунув руку в горло животного и оттянув одним пальцем хрящи гортани, ввел в гортань трубку, соединенную с респиратором.

Трубка оказалась слишком узкой, и мы быстро обнаружили утечку воздуха. Пришлось перепробовать еще несколько вариантов; в конце концов мы остановились на пластмассовой трубке диаметром 2,8 сантиметра, которая плотно входила в гортань и трахею. Теперь можно было начать попытки оживить дельфина при помощи искусственного дыхания.

Правда, канитель с трубками заняла слишком много времени и оживить это животное так и не удалось. Но зато следующее животное мы все-таки спасли и сумели поддерживать в нем жизнь в течение всего наркоза до тех пор, пока у него не восстановилось нормальное дыхание.

Мы пустили этого дельфина после операции обратно в бассейн, чтобы посмотреть, сможет ли он плавать, так как опасались, что его мозг поврежден в результате аноксии (кислородного голодания). Видимо, мозг действительно пострадал, потому что животное, пытаясь плыть, все время заваливалось на правый бок. Именно при работе с этим дельфином мы впервые услышали и записали на магнитофонную пленку сигнал бедствия, а также засняли на кинопленку все, что произошло в дальнейшем.

Дельфин, выпущенный в бассейн, в котором находились два других дельфина, издал очень короткий, пронзительный, высокий свист, состоящий из двух фаз — возрастающей и убывающей по высоте. Этот звук трудно было расслышать, находясь на воздухе, но я услышал его через гидрофон; к счастью, в это время я вел магнитофонную запись и киносъемку.

Сигнал бедствия моментально возымел свое действие. Два других дельфина быстро подплыли к дельфину, подавшему этот сигнал, и, нырнув под него, вытолкнули его на поверхность, так чтобы он мог дышать.[5] Он, однако, сделал лишь один вдох и вновь погрузился в воду. После этого между тремя животными произошел быстрый обмен звуками, напоминавшими щебетание и свист.

Затем два здоровых дельфина подплыли к пострадавшему с правой стороны и, подставляя по очереди свои тела для опоры, помогли ему плыть в правильном положении (не заваливаясь на правый бок), так что на этот раз он сам смог подняться на поверхность, чтобы набрать в легкие воздух. Так они «опекали» его в течение некоторого времени. Мы, однако, еще слишком мало знали о подобных вещах и не рискнули положиться только на помощь других дельфинов.

Войдя в бассейн и погрузив нашего дельфина на носилки, мы попытались проделать с ним то, что обычно делают с утопленииками для того, чтобы их оживить. Мы попробовали, например, вылить воду из его легких через дыхало, наклонив для этого голову животного под углом 45°. Мы все еще считали, что у этих животных воздухоносные пути перекрещиваются с путями прохождения пищи.

Однако все наши попытки не дали желаемых результатов, и тогда, зная, что мозг этого животного безнадежно поврежден, мы решили пожертвовать им, чтобы по крайней мере изучить анатомию его мозга.

Перед нами постепенно вырисовывалась картина странного существования и странной физиологии, к из учению которой мы совсем не были подготовлены. Быстрая гибель животных от наркоза страшно угнетала нас. Каждая смерть была для нас новым испытанием. Однако мы при этом учились оберегать животных от гибели, постепенно устраняя свои основные методические ошибки.

Вначале у нас мелькнула мысль, что, может быть, нембутал представляет собой специфический яд для дельфинов. Поэтому мы попробовали применить паральдегид — самый безопасный из всех известных нам наркотических препаратов, который оказывает наименьшее влияние на дыхание человека. Он настолько безвреден, что применяется при белой горячке, чтобы снять явления возбуждения, наступающие у алкоголиков, когда их лишают спиртного. Мы испытали паральдегид на одном из дельфинов, введя его внутрибрюшинно в дозе, меньшей, чем соответствующая доза для человека. И снова дыхание живот ного нарушилось.

Однако, пока животное еще дышало (после введения паральдегида), нам удалось сделать важное наблюдение, которое позволило нам лучше понять строение воздухоносных путей дельфина. Мы обнаружили, что изо рта животного выходит какой-то газ, который пахнет то паральдегидом, то рыбой. Газ, пах нувший паральдегидом, выходил из легких и попадал в полость рта, пройдя между гортанью и носоглоточным сфинктером. Увеличив дозу паральдегида, мы заметили, что при этом возросло и количество газа, выходившего через рот, пока наконец из легких не вышел весь воздух. Мы нашли, таким образом, «метку», позволявшую точно установить, когда газ выходит из желудка, а когда — из легких. Наружный клапан дыхала никогда не выходит из строя так быстро или так легко, как лежащий в глу бине носоглоточный сфинктер.

Все эти наблюдения помогли разработать метод оживления наркотизированных животных, который, несомненно, можно еще больше усовершенствовать. Мы измерили давление воздуха в трахее у живого ненарко тизированного дельфина. Оказалось, что ненаркотизированному животному можно легко ввести в трахею иглу через кожу без всякого сопротивления с его стороны. Когда животное не находится в воде, давление воздуха в трахее на 20 миллиметров ртутного столба выше давления окружающего воздуха. Когда животное погружено в воду, это давление также примерно на 20 миллиметров ртутного столба превышает гидростатическое давление воды на уровне середины тела животного.[6]

Это и есть то предельное давление, под которым респиратор должен нагнетать воздух в легкие животного, извлеченного из воды. По достижении этой величины введение воздуха следует прекратить, чтобы не переполнять легкие. В конце концов я разработал такой метод исследования мозга дельфинов, который исключал необ ходимость в общем наркозе, и мы прекратили дальнейшую работу по совершенствованию респиратора. Хотя автоматический респиратор так и не был создан, данные, которые мы получили, могут оказаться чрезвычайно полезными в будущем, если возникнет необходимость в какой-либо операции (например, на желудке) у одного из этих животных.

Когда выяснилось, что и паральдегид не безопасен Для дельфинов, в нашей группе едва не вспыхнул бунт. Мысль о гибели животных не давала нам покоя. Правда, сотрудники Маринлэнда вели себя очень благородно и по мере возможности скрывали свое возмущение по поводу того, как мы обращаемся с их друзьями. И только дрессировщик Андре Коуэн, управляющий Билл Роллестон, куратор Ф. Дж. Вуд и, наконец, братья Нортон и Том Баскины — владельцы местного ресторана и мотеЛя — настойчиво, хотя и мягко твердили нам, что дельФины — животные необычайно умные, игривые, дружески расположенные к людям и что так с ними обращаться нельзя. Вуд, впрочем, соглашался предоставить нам возможность продолжать наши исследования, если мы того пожелаем, однако он чувствовал, что гибель пяти животных должна была бы послужить нам достаточно серьезным уроком. Я совершенно уверен, что ему не хотелось продолжать жертвы во имя науки, пока мы не подытожим то, что нам уже удалось узнать.

Все мы были очень опечалены и оправдывали себя лишь сознанием того, что если опыт удастся, то его уже больше не придется повторять.

В конце концов мы поняли, что не сможем получить никаких нейрофизиологических данных и что нам придется удовольствоваться пятью препаратами целого мозга для нейроанатомического изучения. Правда, эти препараты были гораздо лучше, чем все то, что удавалось получить ранее для изучения коры мозга и таламуса (другой части переднего мозга). Чтобы обеспечить хорошую фиксацию, мы произвели под глубоким наркозом перфузию формалином через аорту (основной кровеносный сосуд, идущий от сердца).

При последующем изучении полученных препаратов (позднее д-р Кругер и д-р Розе исследовали их вновь уже в Университете Джонса Гопкинса) мы установили, что у взрослого животного мозг очень велик и сложен и что он увеличивается в размерах с увеличением длины тела (см. табл. 4 в Приложении 2). Мозг был настолько велик, что для пропитывания его целлоидином (предварительная обработка, необходимая для приготовления срезов) понадобился целый год. Мы смогли определить вес мозга точнее, чем это делалось прежде, и обнаружили, что у животных длиной от 2 до 2,5 метра его вес колеблется в пределах 1175–1707 граммов.

Анализ, произведенный после заливки и окраски препаратов, показал, что плотность клеток в коре у дельфина почти такая же, как у человека.[7] Кроме того, этот анализ показал, что у дельфинов имеются те же таламические ядра, что и у приматов, в том числе и у человека, и что они сравнимы с человеческими по размеру [21].

Мы установили также, что перфузия мозга под наркозом через аорту бывает успешной только в том случае, если производить ее крайне быстро. Перфузия через сонные артерии невозможна, так как жидкость вытекает через "чудесную сеть" (особая сеть артерий и вен), которую перерезают при вскрытии.

Наши собственные наблюдения подтвердили долголетние наблюдения сотрудников Маринлэнда, уверявших, что дельфины не нападают на человека, даже если он причиняет им боль. Это кажется порой странным, потому что дельфины нападают, например, на акул и убивают их, а также дерутся друг с другом в брачный период. Физически дельфины достаточно сильны, чтобы оторвать или откусить человеку руку или ногу или чтобы отбить ему внутренности внезапным сильным ударом. Однако не известно ни одного случая, когда бы эти животные нанесли человеку травму, даже если этот человек плохо с ними обращается.

Все наблюдения и выводы, сделанные нами в 1955 году, имели неоценимое значение для нашей дальнейшей работы с дельфинами. Именно первые две недели, проведенные в

Маринлэнде, и вдохновили меня на то, чтобы в последующие годы тратить все больше и больше времени, сил и средств на изучение этих поистине замечательных существ.

ГЛАВА IV

Новые методы исследования

Во время экспедиции 1955 года мы многое узнали о дельфинах. М-р Вуд составил целую коллекцию звуков, которые эти животные издают в неволе. Мы прослушали магнитофонные записи и прочли его статью о различных дельфиньих звуках [60]. Пользуясь его гидрофоном, мы смогли услышать эти звуки непосредственно в тот момент, когда дельфины их издавали.

Мы наблюдали дрессированных животных, знакомились с программой дрессировки и просмотрели представления для публики; «режиссером» их был Андре Коуэн. Мы поняли, что все дрессировщики и все сотрудники Морской студии относятся к дельфинам с глубокой симпатией. Им претила наша работа — ведь мы убивали этих дружелюбных животных, и мы чувствовали, что они осуждают наши методы, тем не менее их чрезвычайно интересовали наши исследования. Придя к заключению, что никакие опыты на мозге живых дельфинов невозможны без разработки совершенно новых методов, мы временно занялись общими наблюдениями за поведением этих животных. Летом 1956 года на острове Нонамессет близ ВудсХола я снова встретился с Уильямом Шевиллом и Барбарой Лоуренс. Они получили дельфина в Морской студии и переправили его самолетом на остров.

Там его поместили в маленький бассейн и изучали его голосовые реакции и его чувствительность к высоким звукам под водой.

Все были крайне удивлены, когда выяснилось, что дельфин воспринимает звуки с частотой более 140 килогерц, — для человека такие звуковые колебания, безусловно, лежат в диапазоне ультразвука. Шевилл и Лоу ренс установили также, что звук, подобный "скрипу двери", который нередко отмечали в Маринлэнде, представляет собой нечто сходное с сигналом сонара: дельфины посылают звуковые колебания, затем «принимают» отраженное эхо и таким образом обнаруживают различные предметы, и особенно рыбу, в мутной воде или ночью. Эти опыты убедили меня, что у дельфинов имеется весьма действенная акустическая система, которая позволяет им опознавать различные предметы. Проработав со своим дельфином около двух месяцев, Шевилл и Лоуренс выпустили его на свободу.

Поездка на остров Нонамессет побудила меня провести опыты на мозге дельфинов, причем я решил не прибегать к наркозу. Я вернулся в Маринлэнд с кое-какими мыслями о том, каким образом следует осуществить эти опыты. Проверяя методику на обезьянах, я обнаружил, что она очень проста и дает желаемые результаты. Обезьяну привязывали и вбивали ей в череп кусочек иглы для подкожных инъекций ("направляющий канал"), причем игла входила в полость черепа, но не проникала в мозг.

Изолированный и экранированный металлический электрод с зачищенным кончиком вводили через маленькое отверстие в коже по направляющему каналу в мозг. Глубину погружения электрода регулировали маленьким манипулятором, расположенным на внешнем конце направляющего канала. Таким методом можно было в самых различных условиях регистрировать электрические потенциалы в участках мозга, расположенных на разной глубине, и возбуждать активность клеток мозга, пропуская через эти маленькие электроды электрический ток; он позволяет также вводить химические вещества в малых количествах через тонкие иглы в любую область мозга.

Я использовал этот метод, пытаясь обучить обезьяну голосовым сигналам, выражающим ожидание и просьбу. Ограниченное в своих движениях животное, после того как в определенные участки мозга ввели электроды, начинало лаять. Эти звуки через микрофон включали электрическую цепь, и в конечном счете на систему поощрения в мозге обезьяны с небольшой задержкой наносилась серия электрических раздражений. Другими словами, если обезьяна лаяла, то через определенный промежуток времени у нее возникало кратковременное ощущение удовольствия. Ранее мы обнаружили, что обезьяну можно легко обучить нажимать на ключ, чтобы вызвать раздражение мозга в определенном месте. Ей приходилось по вкусу это раздражение, и она нажимала на ключ трижды в секунду на протяжении 16 часов в день. Однако, когда мы перешли к звуковым реакциям. я убедился, что обезьяна, хотя и стремилась издавать звуки, так и не смогла взять в толк, что за этим последует вознаграждение; даже сотни ежедневных проб на протяжении шести месяцев не вызвали у нее такого рода понимания. Мы сделали вывод, что у обезьяны с большим трудом можно вызвать произвольные звуковые реакции; вообще звуковая реакция у обезьян — это лишь одно из выражений эмоциональной реакции (воркование — при требовании пищи, лай — в случае, если животное разгневано, крик — если ему причиняют боль и т. д.).

Была составлена подробная карта расположения в мозге обезьян точек, при раздражении которых возникают различные эффекты, например движение мышц и изменение мотиваций.

Системы поощрения и наказания были также изучены и нанесены на карту [27].

Прежде на кошках и крысах, а теперь на обезьянах мы показали, что животное можно приучить к простой операции — тянуть за рычаг, чтобы вызвать раздражение током определенных участков своего же собственного мозга. Если такому животному с вживленными в соответствующее место мозга электродами дать выключатель, то в конце концов оно само станет замыкать контакт, чтобы вызвать серию электрических раздражений мозга. Если расположить электроды в других участках мозга, то животное делает все возможное, чтобы избежать раздражения этих областей или уклониться от него; например, оно нажимает на выключатель, чтобы прекратить раздражение.

Ставя опыты с обезьянами, мы разработали методы, которые позволили нащупать порог эффекта «автостопа» и изучить эффект реакции «автостарта». Результаты, имеющие значение для работы с дельфинами, изложены ниже [27].

Обезьяна раздражала определенную систему в своем мозге трижды в секунду в течение примерно 16 часов в день. Эффект совершенно не зависел от каких-либо условий окружающей среды, и животное можно было лишь ненадолго отвлечь от этого занятия. У обезьяны менялся характер, и из подозрительной и агрессивной она становилась довольно ласковой и внимательной, проявляя большой интерес к окружающим людям; таким образом удавалось быстро «приручить» даже свирепое животное.

При раздражении системы противоположного типа (системы наказания) обезьяна приучалась выключать серию раздражений постепенно нарастающей интенсивности и бодрствовала по 48 часов, стремясь избавиться от неприятных раздражений. Обезьяна становилась крайне агрессивной и иногда начинала кусать любой предмет. оказавшийся у ее рта (в том числе и пальцы экспериментатора).

Хотя воздействие поощрения в системе самораздражения было весьма эффективным и дрессировка велась в течение полугода, ни одна из трех обезьян так и не научилась издавать те звуки, которые гарантировали ей вознаграждение. Каждая из них без труда привыкла нажимать на выключатель рукой, ногой или языком; но даже при голосовом ключе (выключателе, включающем электрическую цепь при звуках голоса) они не смогли научиться издавать звуки, чтобы вызвать раздражение системы поощрения [27].

Обезьяна обучалась выполнять крайне сложные задачи, чтобы вызвать такое раздражение посредством нажатия на выключатель. Она обучалась тому, что мы называем «псевдосчетом», т. е. ее учили многократно нажимать на выключатель, чтобы получить раздражение, скажем, при шестом включении. Эта операция и была названа «псевдосчетом», после того как было обнаружено, что животное не считает, а нажимает на контакт ритмически, пока не вызовет раздражения. Но если внезапно изменить требуемое число включений, то животное страшно огорчается; оно пытается вырваться из специальных креплений, которые ограничивают свободу его движений, и не сразу входит в тот ритм, который требуется для решения новой задачи.

"Приручение" при раздражении положительной системы (системы "автостарта") являет собой удивительное зрелище. Очень свирепая обезьяна с длинными клыками при раздражении этой системы становится послушным животным. Она быстро прибавляет в весе и кажется совершенно счастливой, хотя свобода ее ограничена: ведь животное сиднем сидит в кресле денно и нощно на протяжении многих недель.

Наоборот, при раздражении системы противоположного типа животное становится совсем несчастным: оно теряет аппетит и крайне агрессивно относится к тем, кто за ним ухаживает.

Не исключено, что длительное раздражение (на протяжении, например, нескольких часов) может вызвать смерть животного.

Такие отрицательные эффекты можно полностью исключить, раздражая хотя бы в течение нескольких минут систему поощрения.

Таким образом, эти активные системы мотивации в мозге, положительная и отрицательная, необычайно действенны и позволяют обучить животное за короткое время всему, чему оно способно обучиться. Такой метод гораздо действеннее любого другого известного нам приема, основанного на реакциях непосредственного поощрения или наказания. Он имеет еще и то преимущество, что позволяет экспериментатору непосредственно и точно регулировать силу и длительность раздражения.

Я решил, что результаты работы, проведенной с обезьянами макаками, можно использовать для составления карты мозга дельфинов [29]. Если мы смогли бы применить это могучее средство исследования, то мы научились бы управлять поведением дельфинов и ускорили бы темп их обучения. Нам предстояло определить, поддаются ли эти животные с крупным мозгом такому обучению и чувствительны ли они к "промывке мозгов" током, как обезьяны, у которых мозг гораздо меньше.

 

ГЛАВА V

Первые результаты

В октябре 1957 года я вновь приехал в Маринлэнд, вооруженный новой методикой исследования, которая была испробована на обезьянах. Прежде чем приступить к работе на мозге дельфина, мы должны были разработать более совершенные способы крепления животного, чем те, которые применялись нами в 1955 году.

Оказалось, что содержание дельфина на воздухе в течение длительного времени (до шести дней) приводит к фатальным последствиям и что его надо смачивать соленой водой, чтобы предотвратить шелушение кожи. Много времени ушло на разработку способа крепления дельфина в маленьком лабораторном аквариуме, который подготовил м-р Вуд. Мы считали, что следует строго ограничить движения головы у дельфинов при пробивании направляющего канала, чтобы застраховать как животных, так и нас самих от возможных травм.

Потратив неделю времени, мы придумали систему крепления: она состояла из доски с отверстием, в которое просовывали морду животного. Изнутри это отвер стие было выложено эластичным пенопластом (изоцианатной пеной). В этом «наморднике» животное могло двигать челюстями вверх, вниз и в стороны в диапазоне 5–8 сантиметров. Животное подвешивали в воде на ремнях, прикрепленных к двум трубам, идущим вдоль аквариума.

Голова удерживалась в определенном положении при помощи изогнутой стальной полосы, покрытой пе нопластом, которая плотно прилегала сзади к шее. Кожа на тех частях тела, которые выступали из воды, оставалась влажной, так как спину животного покрывали простыней, непрерывно смачивая ее водой, которая разбрызгивалась из сплющенных иголок для подкожной инъекции. Вес животного в основном уравновешивался выталкивающей силой воды. Верхняя часть головы с дыхалом находилась над водой. После первого же опыта животное переносило фиксацию в станке вполне хорошо.

Приступая к первому опыту, я не без трепета ввел анестезирующий препарат местного действия в кожу, сало и мышцы верхней части головы, как раз позади дыхала. Когда я с усилием вводил препарат в покрывающие череп ткани, дельфин подпрыгивал при каждом уколе иглой. Затем животное затихло и перестало дергаться, и я начал вбивать в череп направляющие каналы [28].

Маленький молоток я сменил большим, плотницким и тем самым повысил скорость операции. Процедура эта, видимо, не причиняла животному больших страданий, Дельфин дергался при каждом ударе молотка лишь потому, что удары отдавались в голове сильным гулом. Мы не отметили ни малейших признаков, которые указывали бы на то, что эта процедура вызывала у животного боль. Но, даже не причиняя боли, такая операция может вызвать у чувствительных животных психическую травму.

Я испробовал на себе эту процедуру, чтобы убедиться, действительно ли она выносима, и нашел, что даже без местной анастезии боль оказывается не слишком сильной. Однако удары молотка по игле отдаются в ушах гулом ошеломляющей силы.

В предыдущей работе с обезьянами я обнаружил, что живая кость подобна живому

"зеленому" дереву: в кость так же удобно вбивать иглу, как в свежее дерево — гвоздь. Если же кость мертва, то эта процедура напоминает вбивание гвоздя в старую оштукатуренную стену. Каждый раз, когда мы пытались вбить направляющий канал в мертвый высохший череп, кончик этого канала ломался в кости. Однако при работе на живом влажном черепе ничего подобного не наблюдалось; направляющий канал плавно входил в кость, раздвигая ткань, а не проталкивая ее вперед.

Первый дельфин, которому мы вбили направляющие каналы, был зарегистрирован под № 6. Мы решили вести полную регистрацию, нумеруя всех животных, участ вовавших в этой серии опытов. Наш дельфин, хотя и был шестым в серии, первый подвергся нелегкой операции.

Первый направляющий канал (длиной около 30 миллиметров) удалось ввести удивительно легко и быстро. Мы моментально провели электроды через кожу, сало, мышцы и отверстие канала в мозг, а затем приступили к долгому и кропотливому изучению этого гигантского мозга при помощи электрического раздражения.

Каждый оборот манипулятора продвигал кончик электрода на 1 миллиметр в глубину мозга. В каждой зоне мозга мы наносили очень слабые электрические раздражения различной интенсивности и пытались про следить, что же при этом происходит с животным. Я подчеркиваю «пытались» потому, что, так же как и у человека, в мозге дельфина есть много областей, дающих при раздражении эффекты, которые мы еще не понимаем. При раздражении обширных, так называемых «молчащих» зон мозга человека не возникает непосредственно наблюдаемого эффекта. Но некоторые зоны исключаются из числа «молчащих», по мере того как мы открываем новые присущие им функции.

Обычно мы пытаемся выявить вызванные раздражением движения определенных групп мышц. И прежде всего мы ищем у животного какое-либо движение, возникающее при раздражении. Ну а уж если такое движение выявлено, то его легко продемонстрировать и другим людям. Например, во время опыта на дельфине мы обнаружили в глубине коры двигательную зону, которую в человеческом мозге мы назвали бы супраорбитальной (надглазничной). При раздражении этой специфической области один глаз животного поворачивался в определенном направлении и удерживался в таком положении, пока длилось раздражение. Раздражение мозга в одной точке вызывало поворот глаза вверх, раздражение в другой точке — поворот его вниз, в третьей — вперед, в четвертой — назад. Эффект такого раздражения очевиден. Можно обнаружить области мозга, которые регулируют Движение грудного плавника, глаза, языка, мышц спины, хвоста и даже эрекцию пениса. Пользуясь нейрофизиологическими терминами, можно сказать, что все это "двигательные влияния": раздражаемая область мозга непосредственно активирует определенные мышцы.

Однако "мотивационные"[8] влияния не столь очевидны, как двигательные. Для того чтобы знать, попали ли вы в активные области мозга, т. е. в те области, которые вызывают мотивацию, надо обучить животное. Однако при составлении карты мозга обычно имеют дело с необученным животным, с которым трудно работать. Правда, если вы нашли одну такую точку и обучили животное, то затем уже совсем не трудно бывает «нащупать» и другие активные точки. Но пока вы не нашли первой зоны, вызывающей мотивацию, опыты ваши подобны выстрелам в темноте. Наши первые открытия на дельфине были сделаны, когда мы натолкнулись в мозге животного № 6 на точку, относящуюся к системе поощрения.

Целый вечер мы занимались исследованием мозга этого животного, продвигая каждый раз электрод на 1 миллиметр в глубь обширной области коры верхней части мозга. Такими миллиметровыми шагами мы продвинулись примерно на 60 миллиметров вглубь; мы останавливались то на 15 минут, то на 1 час в каждой точке, пытаясь выяснить, можно ли в этой точке вызвать какую-либо реакцию, мотивационную или двигательную. Очевидно, мы натолкнулись на одну из больших «молчащих» зон; у человека такие зоны расположены в передней лобной области (как раз над глазами). Мы работали допоздна. Разочарование было полное. Ну а что если весь этот мозг «молчащий»? Что если что-то не в порядке с электродами? А может быть, мы вообще все делаем не так, как надо. Наше время истекало, нас одолевало нетерпение, но в конце концов мы были вынуждены уйти из лаборатории.



Поделиться:


Последнее изменение этой страницы: 2019-05-19; просмотров: 85; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.120.17 (0.054 с.)