Геометрический камень преткновения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Геометрический камень преткновения



 

Вспомним, как происходит дыхание (мы обсуждали это во второй части книги). Окислительно-восстановительные реакции генерируют трансмембранный протонный градиент, за счет которого потом происходит синтез АТФ. Для производства энергии нужна неповрежденная мембрана. Эукариотические клетки используют для производства АТФ внутреннюю мембрану митохондрий, в то время как бактерии, у которых нет органелл, должны использовать внешнюю клеточную мембрану.

Ограничение, наложенное на бактерии, имеет чисто геометрическую природу. Представим для простоты, что бактерия имеет форму куба, затем удвоим его пропорции. У куба шесть граней, так что если длина каждой стороны нашей кубической бактерии — одна тысячная миллиметра (1 μm), то ее удвоение учетверит площадь поверхности с 6 μm2 (1 х 1 х 6) до 24 μm2 (2 x 2 x 6). Однако объем куба получается путем умножения длины на ширину и глубину, что дает нам восьмикратное увеличение от 1 μm3 (1 х 1 х 1) до 8 μm3 (2 x 2 x 2). Если длина каждой стороны куба равна 1 μm, отношение площади поверхности к объему равно 6/1 = 6; если длина стороны равна 2 μm, отношение площади поверхности к объему составляет 24/8 = 3. Соотношение площади поверхности к объему сократилось вдвое. То же самое произойдет, если мы снова удвоим длину стороны куба. Отношение площади поверхности к объему теперь равно 96/64 = 1,5. Поскольку эффективность дыхания бактерий зависит от отношения площади поверхности (то есть площади наружной мембраны, используемой для производства энергии) к объему (массе клетки, использующей имеющуюся энергию), это означает, что эффективность дыхания бактерий с увеличением их объема падает гиперболически (если точнее, то с массой в степени ⅔, как мы увидим в следующей части).

Снижение эффективности дыхания тесно связано с проблемой поглощения питательных веществ: уменьшение отношения площади поверхности к объему ограничивает скорость поглощения пищи относительно ее потребления. В какой-то мере эти проблемы можно смягчить за счет изменения формы клетки (например, палочка имеет большее отношение площади поверхности к объему, чем шар) или за счет складчатости и микроворсинок мембраны (как у нас в стенке кишечника, где происходит всасывание пищи). Тем не менее надо полагать, что рано или поздно сложные формы будут элиминироваться отбором просто потому, что они слишком неустойчивы, или потому, что их трудно точно воспроизводить. Всякий, кто пытался лепить из пластилина, знает, что проще всего вылепить и воспроизвести неровный шарик. Бактерии, очевидно, того же мнения: большинство из них имеет сферическую (кокки) или палочковидную (бациллы) форму.

С точки зрения энергии бактериальная клетка, которая вдвое больше «нормы», будет производить в два раза меньше АТФ на единицу объема, а поскольку клеточные компоненты (белки, жиры и углеводы) теперь занимают больший объем, ей придется направлять на их синтез больше энергии. Отбор же почти всегда благоприятствует маленьким клеткам с небольшими геномами. Поэтому неудивительно, что бактерии, сравнимые по размеру с эукариотами, можно пересчитать по пальцам, и эти исключения только подтверждают правило. «Эукариотический» размер имеет, например, гигантская бактерия Thiomarganta namibiensis («серная жемчужина Намибии»), открытая в конце 1990-х гг.: 100–300 микрон (0,1–0,3 мм) в диаметре. Это открытие вызвало небольшую сенсацию, но на самом деле основную часть этой бактерии занимает большая вакуоль. В ней накапливаются вещества, которые бактерия использует для дыхания (они постоянно поступают с поднимающимися на поверхность подземными водами у побережья Намибии). Гигантский размер этой бактерии — сплошная фикция. Сама бактерия представляет собой тонкий слой на поверхности сферической вакуоли, как резиновая оболочка наполненного водой воздушного шарика.

Однако геометрия — не единственный камень преткновения бактерий. Вспомним про закачку протонов. Для производства энергии бактерии должны закачивать протоны через внешнюю клеточную мембрану в пространство за пределами клетки в строгом смысле слова. Это пространство называется периплазмой, так как ограничено снаружи клеточной стенкой[40]. Клеточная стенка, вероятно, не дает протонам рассеиваться совсем. Сам Питер Митчелл отмечал, что бактерии подкисляют среду во время активного дыхания, и надо полагать, что у бактерий без клеточной стенки рассеивается больше протонов. Эти соображения помогают объяснить уязвимость утративших клеточную стенку бактерий: они лишаются не только структурной поддержки, но и наружной границы периплазматического пространства (конечно, у них остается внутренняя граница — сама мембрана клетки). Без этой наружной границы протонный градиент рассеивается быстрее, хотя некоторые протоны, по-видимому, «привязаны» к мембране электростатическими силами. Любое рассеивание протонного градиента, скорее всего, нарушит хемиосмотическое производство энергии. Его эффективность упадет, а значит, замедлятся и все остальные внутренние процессы в клетке. Так что уязвимость бактерий, потерявших клеточную стенку, — это наименьшее, чего можно было бы ожидать; странно, что такие оголенные клетки вообще выживают.

 



Поделиться:


Последнее изменение этой страницы: 2019-04-27; просмотров: 103; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.24.134 (0.007 с.)