Кодирование числовой информации 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кодирование числовой информации



Числовая информация, как и любая другая, хранится и обрабатывается в компьютерах в двоичной системе счисления – числа представляются в виде последовательностей нулей и единиц.

Существуют два вида чисел и два способа их представления: форма с фиксированной точкой и форма с плавающей точкой. Форма с фиксированной точкой применяется для целых чисел, форма с плавающей точкой – для вещественных (действительных) чисел. Это рациональные и иррациональные числа, у которых может быть как целая, так и дробная часть, записываемая справа от разделителя целой и дробной части.

Целые числа в компьютере хранятся в памяти в формате с фиксированной запятой. В этом случае каждому разряду разрядной сетки соответствует всегда один и тот же разряд числа.

Целые числа без знака (положительные) – для их хранения может отводиться последовательность из 8, 16 или 32-х бит памяти. Например, максимальное 8-битное число A2 = 111111112 будет храниться следующим образом (прямой код):

               

Целые числа со знаком (могут быть положительные и отрицательные) – при их хранении используется последовательность из 8, 16 или 32-х бит памяти, причем старший бит (первый слева) обозначает знак числа – 0 - положительное, 1 – отрицательное. При записи чисел используется не прямой, а дополнительный код двоичного числа равный 2N – A, где N – разрядность числа, A – прямой код двоичного числа.

Для того чтобы представить действительное число X в виде набора целых чисел (двоичных – для представления в компьютерной памяти), его необходимо привести к нормализованной форме:

X = ± M · NP;

где Mмантисса (дробная часть), N – основание системы счисления, а P – порядок числа.

Для десятичной системы счисления нормальная форма X = ± M · 10P, для двоичной X = ± M · 2P.

Например, число 22.2210 в таком виде будет выглядеть, как +0,2222·102 (при записи чисел в памяти ЭВМ ноль и запятая отсутствуют ).

Таким образом, действительные число на компьютерах хранится в двоичной системе счисления в виде:

где S – признак знака числа. Поскольку размер памяти, отводимый под мантиссу и порядок, ограничен, то действительные числа представляются с некоторой погрешностью, определяемой количеством разрядов в мантиссе числа, и имеют определенный диапазон изменения,

определяемый количеством разрядов в порядке числа.


 


Кодирование изображений

Изображение – некоторая двумерную область, свойства каждой точки (pixel, пиксель) которой могут быть описаны (координаты, цвет, прозрачность…).

Множество точек называется растром, а изображение, которое формируется на основе растра, называются растровым. На экране монитора всегда формируется растровое изображение, однако, для хранения может использоваться и векторное представление информация, где изображение представлено в виде набора графических объектов с их координатами и свойствами (линия, овал, прямоугольник, текст и т. п.).

На мониторе и в растровых изображениях число пикселей по горизонтали и по вертикали называют разрешением (resolution). Наиболее часто используются 1024×768 или 1280×800, 1280×1024 (для 15, 1719), 720×576 (качество обычных DVD-фильмов), 1920×1080 и 1920×720.

Для представления цвета используются цветовые модели. Цветовая модель (color model) – это правило, по которому может быть определен цвет. Самая простая двухцветная модель – битовая. В ней для описания цвета каждого пикселя (чёрного или белого) используется всего один бит. Для представления полноцветных изображений используются несколько более сложных моделей. Известно, что любой цвет может быть представлен как сумма трёх основных цветов: красного, зелёного и синего. Если интенсивность каждого цвета представить числом, то любой цвет будет выражаться через набор из трёх чисел. Так определяется наиболее известная цветовая RGB -модель (Red-Green-Blue).

Цветовая модель RGB была стандартизирована в 1931 г. и впервые использована в цветном телевидении. Модель RGB является аддитивной моделью, то есть цвет получается в результате сложения базовых цветов. Кроме растрового изображения на экране монитора существуют графические форматы файлов, сохраняющие растровую или векторную графическую информацию. С такой информацией работают специальные программы, которые преобразуют векторные изображения в растровые, отображаемые на мониторе.

 

Кодирование звуковой информации

Звук можно описать в виде совокупности синусоидальных волн определённых частоты и амплитуды. Частота волны определяет высоту звукового тона, амплитуда – громкость звука. Частота измеряется в герцах (Гц, Hz). Диапазон слышимости для человека составляет от 20 Гц до 17000 Гц (или 17 кГц).

Каждому измерению присваивается числовое значение амплитуды. Количество измерений в секунду называется частотой выборки (sampling rate). Количество возможных значений амплитуды называется точностью выборки (sampling size). Таким образом, звуковая волна представляется в виде ступенчатой кривой. Ширина ступеньки тем меньше, чем больше частота выборки, а высота ступеньки тем меньше, чем больше точность выборки.

Возможности наиболее распространённой современной аппаратуры предусматривают работу с частотой выборки до 48 кГц (48 тысяч раз в секунду!), что позволяет правильно описывать звук частотой до 22,05 кГц.

Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. Каждой ступеньке присваивается свой уровень громкости звука, который можно рассматривать как набор возможных состояний.

Кодирование видеоинформации

Видеоинформация – наиболее сложный вид для хранения, обработки и воспроизведения. Впервые движущиеся изображения были сохранены на кинопленке в виде большого количества отдельных кадров изображения, заснятых через небольшие промежутки времени (24 кадра в секунду). Позднее на ту же пленку стала записываться и звуковая дорожка (в последующем несколько дорожек для многоканального звука). Далее появилось телевидение с аналоговой записью движущегося изображения на магнитные ленты (системы телевидения PAL и SECAM используют 25 кадров в секунду, система NTSC – 29,97 кадров в секунду). С появлением компьютеров широкое распространение получили цифровые методы записи и кодирования видеоинформации, которые постоянно совершенствуются.

Качество видеоизображения в цифровых методах постоянно улучшается. Широкое распространение цифрового видео было связано с появление вначале CD-дисков, затем DVD, далее Blu-Ray дисков, на которых, в основном, и распространялись кинофильмы, и емкостью которых ограничивались качественные возможности. В таблице 1.4 приведены характеристики некоторых видеоформатов.

Алгоритмы кодирования видео очень сложны, их описания можно найти в специальной литературе или на сайте http://www.mpeg.org.

Все форматы сжатия семейства MPEG (MPEG-1, MPEG-2, MPEG-4, MPEG-7) используют высокую избыточность информации в изображениях, разделенных малым интервалом времени

Алгоритмы MPEG сжимают только опорные кадры – I-кадры (Intra frame – внутренний кадр). В промежутки между ними включаются кадры, содержащие только изменения между двумя соседними I-кадрами – P-кадры (Predicted frame – прогнозируемый кадр). MPEG-4 использует технологию фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).

Форматы файлов Microsoft AVI и MKV – контейнеры, предназначенные для хранения видеоинформации, синхронизованной с аудиоинформацией. AVI может содержать в себе потоки 4 типов – Video, Audio, MIDI, Text. Причем видеопоток может быть только один, тогда как аудио – несколько.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 476; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.93.207 (0.006 с.)