Содержание книги

  1. Классификация ветроэнергетических устанвок
  2. Основные компоненты ветротурбин
  3. Что лучше - вертикально или горизонтально-осевая вэу.
  4. Зависимость эффективности вэу от направления ветра
  5. Рациональность силовой схемы ветротурбины
  6. Ометаемая поверхность и энергия, снимаемая с единицы длины лопасти
  7. Размещение Генератора и мультипликатора
  8. Ветроустановка мощностью 0.1 кВт, ВЭУ-0.1
  9. Ветроустановка мощностью 30 кВт, ВЭУ-30
  10. Ветроэнергетические установки
  11. Офшорные вэс или вэс морского базирования
  12. Воздействие ветроэнергетики на экологию
  13. Расстояние между препятствием и вэу
  14. Определение направления ветра
  15. Усть-Дунайская ветровая электростанция
  16. Единственным критерием истины является опыт
  17. Бензогенераторы- резервный источник электроснабжения
  18. Ветроэнергетика XIX- XX века
  19. Крупнейшие компании-производители ветроустановок
  20. Краткая История ветроэнергетики (вэ) Китая
  21. Особенности и проблемы вэ Китая
  22. Национальная программа развития вэ в китае
  23. История ветроэнергетики - мировые Перспективы развития
  24. Принципы работы, механика устройств ветроустановок
  25. Установка промышленных ветряков
  26. Экономическая целесообразность - ситуация в России
  27. Сопричастный девелопмент территорий под ветрофермы
  28. Openness, transparency and the absolute juridical cleanliness of transaction.
  29. Вопрос: Нужна ли защита расстоянием вертикальному ветрогенератору?
  30. Виды потенциалов энергии ветра - основы подхода к оценке
  31. Источник метеорологической информации, база данных nasa
  32. Валовый ресурс энергии ветрового потока
  33. Валовый теоретический ветроэнергетический ресурс
  34. Валовый технический ветроэнергетический ресурс
  35. Валовый экономический ветроэнергетический ресурс
  36. Доступный экономический ветроэнергетический потенциал
  37. Потенциал замещения традиционных источников энергии
  38. экологического потенциалов и потенциала ресурсосбережения


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Бензогенераторы- резервный источник электроснабжения



Бензогенераторы пожалуй являются более распространенным источником автономного электроснабжения для дома, коттеджа или небольшого фермерского хозяйства. В продаже существует всевозможная масса таких агрегатов,которые весьма стабильно способны обеспечить электроэнергией автономного потребителя. Именно генераторы от привода двигателей на органическом топливе способны выдавать более стабильные параметры напряжения и мощности,если сравнивать с другими альтернативными источниками энергии такими как ветрогенераторы, солнечные панели.
Читать далее: Бензогенераторы,дизель-генераторы,газоэлектрогенераторы для автономного электроснабжения. Резервный источник электроснабжения

Автор: ветряк | Рубрика: Автономная Ветроэнергетика, другие альтернативы, Производители | Теги: бензогенераторы, время, выбор, газогенераторы, дизель-генераторы, электроснабжение

Фев
05
2011

Ветрогенераторы большой мощности с асинхронным генератором.Примеры ветродвигателей

Яндекс.Директ Все объявления Бензогенераторы Множество предложений от частных лиц. Будь умней – покупай на Slando.slando.ru

Ветрогенераторы фирмы «Nordex»

Примером ветрогенераторов класса с мощностью от 600 кВт до 2,5 МВт, работающих параллельно с энергосистемой, являются также находящиеся в эксплуатации или в стадии разработки ВЭУ немецкой фирмы «Nordex GmbH». Ветрогенератор с асинхронным генератором Nordex N80/2500 1159] одна из последних и наиболее крупных ВЭУ из разработок этой компании. Ее общие технические данные и данные ВЭУ Nordcx-1300 представлены в табл. 5.7.[ad#строчный]

Читать далее: Ветрогенераторы большой мощности с асинхронным генератором.Примеры ветродвигателей

Автор: ветряк | Рубрика: Производители, Строительство | Теги: Асинхронный режим генератора, башня, ветрогенератор, ветродвигатель, ветроэнергетика, время, развитие ВИЭ, сети, сохранения морского наследия, стоимость, Строительство

http://vetrodvig.ru/?cat=129

Горизонтальные ветрогенераторы

 

В основном для ветрогенераторных энергостанций (ВЭУ) используется ветряки с горизонтальной осью вращения. ВЭУ с горизонтальной осью вращения, имеющие две или три лопасти, установленные на вершине башни, — наиболее распространенный тип ветроэлектроустановок. Расположение ведущего вала ротора — части турбины, соединяющей лопасти с генератором, — считается осью машины.У турбин с горизонтальной осью вращения ведущий вал ротора расположен горизонтально. В рабочем состоянии относительно направления воздушного потока ротор турбины может находиться перед опорой — так называемый наветренный ротор или за опорой — подветренный ротор. Чаще всего турбины с горизонтальной осью вращенияимеют две или три лопасти, хотя есть и модели с большим числом лопастей. Последние ВЭУ представляют собой диск с большим количеством лопастей. Они получили название «монолитных» установок. Такие установки используются, в первую очередь, в качестве водяных насосов. Когда ротор турбины с малым количеством лопастей (две-три) не является сплошным, такие ветрогенераторы относят к «немонолитным» установкам. Для наиболее эффективной работы ВЭУ, ее лопасти должны максимально взаимодействовать с ветровым потоком, проходящим через площадь вращения ротора. ВЭУ с большим количеством лопастей обычно работают при низких скоростях вращения, в то время как установки с двумя или тремя лопастями должны вращаться с очень высокой скоростью, чтобы максимально «охватить» ветровые потоки, проходящие через площадь ротора. ВЭУ с большим количеством лопастей менее эффективны, чем турбины с двумя или тремя лопастями, так как лопасти создают помехи друг другу. По способу взаимодействия с ветром ВЭУ делятся на установки с жестко закрепленными лопастями без регулирования и на агрегаты, у которых лопасти сделаны с изменяющимся углом. Обе конструкции имеют преимущества и недостатки. ВЭУ, у которых лопасти сделаны с изменяющимся углом, имеют более высокую эффективность использования ветра и, соответственно, они вырабатывают больше электроэнергии. В то же время, эти ВЭУ должны быть оснащены специальными подшипниками, которые, исходя из имеющегося уже опыта, часто являются причиной поломок агрегатов. Турбины с жестко закрепленными лопастями более просты в обслуживании, однако их эффективность использования ветрового потока ниже. Горизонтально-осевые ВЭУ (горизонтальные ветрогенераторы), в зависимости от количества лопастей можно разделить на одно-, двух-, трех- и многолопастные. Основным недостатком горизонтально-осевых ветрогенераторов является необходимость ориентации ротора на ветер, что требует внедрения дополнительных механизмов или способов ориентации. Основным достоинством ветрогенераторов с горизонтальным ротором является их более высокая эффективность работы, за счет меньшего разброса углов атаки на рабочих режимах, а так же, за счет возможности у отдельных ВЭУ управлять углом установки лопастей. Ветроагрегаты горизонтально-осевых ВЭУ, по сравнению с вертикально-осевыми, имеют более низкие массогабаритные параметры, при прочих равных условиях. Однолопастные ветрогенераторы Однолопастныеветрогенераторы имеют одну лопасть и противовес, выполняющий роль балансирующего механизма. Достоинством однолопастных роторов, по сравнению смноголопастными, является их более высокая скорость вращения за счет более низкого момента инерции. Это позволяет использовать в их схеме прямоприводные синхронные электрогенераторы, рассчитанные на более высокие обороты вращения, и как следствие, имеющие меньшие массогабаритные размеры. Кроме этого, ротор этой конструкции имеет более низкую стоимость за счет уменьшения числа лопастей. В настоящее время выпускаются однолопастные ВЭУ мощностью до 10 кВт, с диаметром ротора до 7 м. Двухлопастные ветрогенераторы В сравнении с ВЭУ с количеством лопастей три и более, двухлопастные имеют те же преимущества, что и однолопастные. Еще одним безусловным достоинством этих ветрогенераторов является уравновешенность ротора при любом угловом положении лопастей, за счет четного их количества. Это их достоинство нашло применение в самоподъемных ветрогенераторах малого и среднего диапазона мощностей. При подъеме с земли или опускании на землю самоподъемных двухлопастных ветрогенераторов, плоскость их ротора, при любом угловом положении лопастей будет стремиться занять горизонтальное положение, что значительно упрощает технологию процесса подъема или опускания этих ВЭУ. Примером самоподъемной двухлопастной ветроустановки является Gev MP, номинальной мощностью 275 кВт, французской фирмы Vergnet S.A. (рисунок 2). Трехлопастные ветрогенераторы Трехлопастные горизонтально-осевые ВЭУ являются наиболее распространенными из предлагаемых на рынке ветряков. Их номинальная мощность составляет от нескольких ватт до 7 МВт. Все ветроэнергетическое оборудование большой мощности (от 500 кВт и выше) представляют трехлопастные горизонтально-осевые ветрогенераторы. На сегодняшний день, ветроустановкой, имеющей самую большую номинальную мощность, является трехлопастная Enercon E-126, номинальной мощностью 7 МВт. Многолопастные ветрогенераторы Многолопастные ВЭУ имеют большое количество лопастей, которое у некоторых моделей может достигать 50 единиц. Ротор этих ветрогенераторов имеет большой момент инерции, вследствие чего, имеет более низкие скорости вращения, но при этом, развивает более высокий крутящий момент. Эта их особенность является достоинством при работе в ветронасосных системах, именно в этой области промышленного применения они заняли нишу.

 

http://bio-еnergy.com.ua/index.php?option=com_content&view=article&id=1051&Itemid=107

История Ветроэнергетики

31.01.2012


История ветроэнергетики начинается с незапамятных времён. Энергия ветра вот уже более 6000 лет надежно и верно служит людям.

Начало

Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во II-I вв. до н. э. В 7 в. н. э. персы строили ветряные мельницы уже бо-лее совершенной конструкции - крыльчатые. В древности для получения муки израильтяне, как и другие народы, мололи съедобные зерна «в жерновах». Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.
«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со стани-ной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс. «Машины: применение природных сил и науки»). Масса такой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых, где для установки крыльев по ветру поворачивали весь корпус - с помощью далеко выступавшего руля или хвоста.
Начиная с XIII в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков.
В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо - 1526 г., Глочестер - 1542 г., Лондон - 1582 г., Париж - 1608 г., и др. В Нидерландах ветряные мельницы откачивали воду с земель, ограждённых дамбами, а в засушливых областях Европы применялись для орошения полей.
Но какую бы работу ни выполняли при помощи мельницы, была необходима непрерывная подача энергии. А у ветра есть существенный недостаток: он часто меняет направление. Как же добиться того, чтобы крылья мельницы были всегда расположены с учетом направления ветра? И вот приду, или «столбовки». Эти мельницы покоились на столбе, подпертом балками, что позволяло поворачивать весь мельничный амбар, устанавливая крылья против ветра. По понятной причине «столбовки» не могли быть очень большими, и тогда придумали другую конструкцию: неподвижную башню с вращающейся крышей. В мельницах такого типа главный вал выходит из крыши, благодаря чему, куда бы ни дул ветер, ее вместе с крыльями-парусами можно развернуть против ветра. А как мельнику удавалось поворачивать крышу вме-сте с валом, крыльями и тормозным устройством? На фотографии мельницы в испанском горо-де Картахена можно заметить сзади выходящую из крыши балку, которая упирается в землю. Это не опорная балка, как может показаться, а рычаг. Такой рычаг, или «водило», позволял усилиями людей или животных поворачивать лопасти мельницы навстречу ветру.
У других мельниц было что-то наподобие пропеллера — ветряное колесо, установленное на противоположной от крыльев стороне крыши. Такое колесо нужно для того, чтобы крылья-паруса автоматически разворачивались в нужном направлении. Допустим, что крылья мельни-цы, поймав ветер, сильно раскрутились. Но внезапно ветер изменил направление, и крылья сра-зу стали вращаться медленнее. Теперь уже ветряное колесо, установленное под прямым углом к крыльям, ловит ветер и начинает раскручиваться. Оно приводит в движение механизм, который автоматически поворачивает крышу, так что крылья мельницы всегда оказываются против вет-ра. Другая сложность в укрощении ветра состоит в том, что сила ветра постоянно меняется. В древности ветрякам, крылья которых напоминали паруса лодок, было трудно «подстраиваться» под разную скорость ветра. От резкого торможения и вызванного им трения мог вспыхнуть огонь, сильные порывы ветра приводили к большим повреждениям: ломались крылья, отказы-вали тормоза. Эта проблема решилась в 1772 году, когда шотландский изобретатель заменил паруса на автоматически отрывающиеся и закрывающиеся щитики, похожие на жалюзи. Из книги «Ветряные мельницы»: «При сильном порыве ветра давление на щитики превосходит си-лу пружины, и они открываются, давая ветру „дорогу", от чего движение крыльев замедляется. Когда ветер стихает, щитики под действием пружины закрываются, что увеличивает поверх-ность крыльев, которые продолжают вращаться примерно с той же скоростью» («Windmills»). С вращающимися крышами и саморегулирующимися крыльями, мельницы достигли сво-его расцвета к концу XIX века. В то время мельницы в Европе вырабатывали 1 500 мегаватт энергии. Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитыва-лось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырехлопастные роторы диаметром 23 м. В России ветряные установки использовались в основном для помола зерна. В начале ХХ века в России насчитывалось около 250 тысяч ветряных мельниц, которые перерабатывали поч-ти половину урожая зерновых. Эти мельницы были сделаны из дерева, диаметр ветроколеса не превышал 12 м. Когда ветра технологических перемен принесли с собой электричество, паровую турбину и двигатель внутреннего сгорания, ветряные мельницы не могли соперничать с мощными и бы-стрыми машинами. Казалось, ветру никогда уже не придется раскручивать мельничные крылья. Однако это был не конец.



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 291; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.205.56.209 (0.008 с.)