Кровь: плазма и клетки крови, гемограмма, функция крови. Мезенхима. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кровь: плазма и клетки крови, гемограмма, функция крови. Мезенхима.



Развитие

Различают эмбриональный и постэмбриональный гистогенез соединительных тканей. В процессе эмбрионального гистогенеза мезенхима приобретает черты тканевого строения раньше закладки других тканей. Этот процесс в различных органах и системах происходит неодинаково и зависит от их неодинаковой физиологической значимости на различных этапах эмбриогенеза. В дифференцировке мезенхимы отмечаются топографическая асинхронность как в зародыше, так и во внезародышевых органах, высокие темпы размножения клеток, волокнообразования, перестройка ткани в процессе эмбриогенеза — резорбция путем апоптоза и новообразование ткани. Постэмбриональный гистогенез в нормальных физиологических условиях происходит медленнее и направлен на поддержание тканевого гомеостаза, пролиферацию малодифференцированных клеток и замену ими отмирающих клеток.

Рыхлая соединительная ткань.

Собственно соединительная ткань включает в себя рыхлую волокнистую и плотную волокнистую соединительные ткани. Рыхлая волокнистая соединительная ткань (textus connectivus collagenosus laxus) обнаруживается во всех органах, - она сопровождает кровеносные и лимфатические сосуды и образует строму многих органов. Она состоит из клеток и межклеточного вещества.

Клеточный состав

Основными клетками соединительной ткани являются фибробласты (семейство фибриллообразующих клеток), макрофаги, тучные клетки, адвентициальные клетки, плазматические клетки, перициты, жировые клетки, а также лейкоциты, мигрирующие из крови; иногда встречаются пигментные клетки. Фибробласты — клетки, синтезирующие компоненты межклеточного вещества: белки (например, коллаген, эластин), протеогликаны, гликопротеины. Фибробласты – это подвижные клетки. В их цитоплазме, особенно в периферическом слое, располагаются микрофиламенты, содержащие белки типа актина и миозина. Движение фибробластов становится возможным только после их связывания с опорными фибриллярными структурами с помощью фибронектина — гликопротеина, синтезируемого фибробластами и другими клетками, обеспечивающего адгезию клеток и неклеточных структур. Во время движения фибробласт уплощается, а его поверхность может увеличиться в 10 раз. Фиброциты — дефинитивные (конечные) формы развития фибробластов. Эти клетки веретенообразные с крыловидными отростками. [Они содержат небольшое число органелл, вакуолей, липидов и гликогена.] Синтез коллагена и других веществ в фиброцитах резко снижен. Миофибробласты — клетки, сходные с фибробластами, сочетающие в себе способность к синтезу не только коллагеновых, но и сократительных белков в значительном количестве. Фибробласты могут превращаться в миофибробласты, функционально сходные с гладкими мышечными клетками, но в отличие от последних имеют хорошо развитую эндоплазматическую сеть. Такие клетки наблюдаются в грануляционной ткани заживающих ран и в матке при развитии беременности. Фиброкласты — клетки с высокой фагоцитарной и гидролитической активностью, принимают участие в «рассасывании» межклеточного вещества в период инволюции органов. Они сочетают в себе структурные признаки фибриллообразующих клеток (развитую гранулярную эндоплазматическую сеть, аппарат Гольджи, относительно крупные, но немногочисленные митохондрии), а также лизосомы с характерными для них, гидролитическими ферментами. Макрофаги — это гетерогенная специализированная клеточная популяция защитной системы организма. Коллагеновые волокна. Толщина до 10 мкм. Оксифильны. Прочные, гидрофильны. Состоят из фибриллярного белка коллагена, который синтезируется фибробластами. Аминокислотный и углеводный состав коллагена варьирует, по этому признаку различают около 16 типов коллагена.

Уровни организации коллагенового волокна. 1.Молекулярный (коллаген). 2.Надмолекулярный (протофибрилла). 3.Фибриллярный (фибрилла). 4.Волоконный (волокно). Эластические волокна: Толщина 1 - 3 мкм, на электронно-микроскопических фотографиях выглядят в виде лентовидных структур (ЭВ). Сильно растяжимы. Состоят из специфического аморфного белка эластина, который синтезируется фибробластами. В молекуле эластина преобладают пролин и глицин. По периферии эластин ограничен микрофибриллярными ГП комплексами (выполняют роль ограничителя растяжения). С возрастом в фибробластах прекращается синтез ГП, нарушаются поперечные микрофибриллярные связи и эластические волокна утрачивают свои свойства (упругость и эластичность). 1) Окситалановые волокна. Не содержат белка эластина, и состоят только из белка фибрилина. 2) Элауниновые волокна. Состоят из эластина и фибрилина в соотношении 50:50

Сухожилие (tendo)

Сухожилие состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Фиброциты сухожильных пучков называются сухожильными клетками - тендиноцитами. Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов, называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани, составляют пучки второго порядка. Прослойки рыхлой волокнистой соединительной ткани, разделяющие пучки второго порядка, называются эндотенонием. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани — перитенонием. В перитенонии и эндотенонии проходят кровеносные сосуды, питающие сухожилие, нервы и проприоцептивные нервные окончания, посылающие в центральную нервную систему сигналы о состоянии натяжения ткани сухожилий.

Фиброзные мембраны. К этой разновидности плотной волокнистой соединительной ткани относят фасции, апоневрозы, сухожильные центры диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, а также белочную оболочку яичника и яичка и др. Фиброзные мембраны трудно растяжимы вследствие того, что пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев друг над другом. В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении, не совпадающем с направлением в соседних слоях. Отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой. Кроме пучков коллагеновых волокон, в фиброзных мембранах есть эластические волокна. Такие фиброзные структуры, как надкостница, склера, белочная оболочка яичка, капсулы суставов и др., характеризуются менее правильным расположением пучков коллагеновых волокон и большим количеством эластических волокон по сравнению с апоневрозами.

Жировая ткань

Жировая ткань (textus adiposus) — это скопления жировых клеток, встречающихся во многих органах. Различают две разновидности жировой ткани — белую и бурую. Эти термины условны и отражают особенности окраски клеток. Белая жировая ткань широко распространена в организме человека, а бурая встречается главным образом у новорожденных детей и у некоторых животных в течение всей жизни.

Белая жировая ткань у человека располагается под кожей, особенно в нижней части брюшной стенки, на ягодицах и бедрах, где она образует подкожный жировой слой, а также в сальнике, брыжейке и забрюшинном пространстве.

Жировая ткань более или менее отчетливо делится прослойками рыхлой волокнистой соединительной ткани на дольки различных размеров и формы. Жировые клетки внутри долек довольно близко прилегают друг к другу. В узких пространствах между ними располагаются фибробласты, лимфоидные элементы, тканевые базофилы. Между жировыми клетками во всех направлениях ориентированы тонкие коллагеновые волокна. Кровеносные и лимфатические капилляры, располагаясь в прослойках рыхлой волокнистой соединительной ткани между жировыми клетками, тесно охватывают своими петлями группы жировых клеток или дольки жировой ткани. В жировой ткани происходят активные процессы обмена жирных кислот, углеводов и образование жира из углеводов. При распаде жиров высвобождается большое количество воды и выделяется энергия. Поэтому жировая ткань играет не только роль депо субстратов для синтеза макроэргических соединений, но и косвенно — роль депо воды. Во время голодания подкожная и околопочечная жировая ткань, а также жировая ткань сальника и брыжейки быстро теряют запасы жира. Капельки липидов внутри клеток измельчаются, и жировые клетки приобретают звездчатую или веретеновидную форму. В области орбиты глаз, в коже ладоней и подошв жировая ткань теряет лишь небольшое количество липидов даже во время продолжительного голодания. Здесь жировая ткань играет преимущественно механическую, а не обменную роль. В этих местах она разделена на мелкие дольки, окруженные соединительнотканными волокнами.

Бурая жировая ткань встречается у новорожденных детей и у некоторых гибернирующих животных на шее, около лопаток, за грудиной, вдоль позвоночника, под кожей и между мышцами. Она состоит из жировых клеток, густо оплетенных гемокапиллярами. Эти клетки принимают участие в процессах теплопродукции. Адипоциты бурой жировой ткани имеют множество мелких жировых включений в цитоплазме. По сравнению с клетками белой жировой ткани в них значительно больше митохондрий. Бурый цвет жировым клеткам придают железосодержащие пигменты — цитохромы митохондрий. Окислительная способность бурых жировых клеток примерно в 20 раз выше белых и почти в 2 раза превышает окислительную способность мышцы сердца. При понижении температуры окружающей среды повышается активность окислительных процессов в бурой жировой ткани. При этом выделяется тепловая энергия, обогревающая кровь в кровеносных капиллярах.

В регуляции теплообмена определенную роль играют симпатическая нервная система и гормоны мозгового вещества надпочечников — адреналин и норадреналин, которые стимулируют активность тканевой липазы, расщепляющей триглицериды на глицерин и жирные кислоты. Это приводит к высвобождению тепловой энергии, обогревающей кровь, протекающую в многочисленных капиллярах между липоцитами. При голодании бурая жировая ткань изменяется меньше, чем белая.

Слизистая ткань

Слизистая ткань (textus mucosus) в норме встречается только у зародыша. Классическим объектом для ее изучения является пупочный канатик человеческого плода.

Клеточные элементы здесь представлены гетерогенной группой клеток, дифференцирующихся из мезенхимных клеток на протяжении эмбрионального периода. Среди клеток слизистой ткани выделяют: фибробласты, миофибробласты, гладкие мышечные клетки. Они отличаются способностью к синтезу виментина, десмина, актина, миозина.

Слизистая соединительная ткань пупочного канатика (или «вартонов студень») синтезирует коллаген IV типа, характерный для базальных мембран, а таакже ламинин и гепаринсульфат. Между клетками этой ткани в первой половине беременности в большом количестве обнаруживается гиалуроновая кислота, что обусловливает желеобразную консистенцию основного вещества. Фибробласты студенистой соединительной ткани слабо синтезируют фибриллярные белки. Лишь на поздних стадиях развития зародыша в студенистом веществе появляются рыхло расположенные коллагеновые фибриллы.

18. Хрящевая ткань. скелетная соединительная ткань

- развивается из склеротомов сомитов мезодермы

- у зародыша позвоночных составляет 50%, у взрослого не более 3%

Функции ткани: опорно-механическая (например: суставные хрящи, межпозвонковые диски), прикрепление мягких тканей и мышц (хрящи трахеи, бронхов, фиброзных треугольников сердца, ушной раковины),

- ткань высокогидрофильна – воды около 70 – 85%.

- не содержит кровеносных сосудов

- используется для пластических операций, т.к.хрящевой трансплантат не дает реакции отторжения при пересадке тканей

- характеризуется слабой регенерацией

Классификация хондроцитов.

ТИП – ЗРЕЛЫЕ, округло-овальной формы, с выростами плазмолеммы, крупное ядро расположено эксцентрично. Развиты грЭПС, пластинчатый комплекс. Цитоплазма базофильна, содержит большое количество микрофибрилл коллагена, эластина, секреторные гранулы протеогликанов. Клетки составляют основную массу зрелого хряща, активно секретируют компоненты хрящевого матрикса и слабо делятся, образуя «изогенные группы».

Хондрогистогинез.

Эластическая хрящевая ткань

Второй вид хрящевой ткани - эластическая хрящевая ткань (textus cartilagineus elasticus) встречается в тех органах, где хрящевая основа подвергается изгибам (в ушной раковине, рожковидных и клиновидных хрящах гортани и др.). В свежем, нефиксированном состоянии эластическая хрящевая ткань бывает желтоватого цвета и не такая прозрачная, как гиалиновая. По общему плану строения эластический хрящ сходен с гиалиновым. Снаружи он покрыт надхрящницей. Хрящевые клетки (молодые и специализированные хондроциты) располагаются в лакунах поодиночке или образуют изогенные группы.

Одним из главных отличительных признаков эластического хряща является наличие эластических волкон в его межклеточном веществе, наряду с коллагеновыми волокнами. Эластические волокна пронизывают межклеточное вещество во всех направлениях.

В слоях, прилежащих к надхрящнице, эластические волокна без перерыва переходят в эластические волокна надхрящницы. Липидов, гликогена и хондроитинсульфатов в эластическом хряще меньше, чем в гиалиновом.

Волокнистая хрящевая ткань

Третий вид хрящевой ткани - волокнистая, или фиброзная, хрящевая ткань (textus cartilaginous fibrosa) находится в межпозвоночных дисках, полуподвижных сочленениях, в местах перехода плотной волокнистой соединительной ткани сухожилий и связок в гиалиновый хрящ, где ограниченные движения сопровождаются сильными натяжениями. Межклеточное вещество содержит параллельно направленные коллагеновые пучки, постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. В хряще имеются полости, в которые заключены хрящевые клетки. Хондроциты располагаются поодиночке или образуют небольшие изогенные группы. Цитоплазма клеток часто бывает вакуолизированной. По направлению от гиалинового хряща к сухожилию волокнистый хрящ становится все более похожим на сухожилие. На границе хряща и сухожилия между коллагеновыми пучками лежат столбиками сдавленные хрящевые клетки, которые без какой-либо границы переходят в сухожильные клетки, расположенные в плотной оформленной волокнистой соединительной ткани сухожилия.

Костные ткани

Костные ткани (textus ossei) — это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество — матрикс костной ткани — представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.

Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время – хрупкость. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани — способность сопротивляться растяжению и сжатию.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.

Классификация

Существует два основных типа костной ткани:

  • ретикулофиброзная (грубоволокнистая),
  • пластинчатая.

Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В грубоволокнистой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в пластинчатой ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок.

К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.

Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее – из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, - гематогенное происхождение.

Пластинчатая костная ткань

Пластинчатая костная ткань (textus osseus lamellaris) — наиболее распространенная разновидность костной ткани во взрослом организме. Она состоит из костных пластинок (lamellae ossea). Толщина и длина последних колеблется от нескольких десятков до сотен микрометров. Они не монолитны, а содержат фибриллы, ориентированные в различных плоскостях.

В центральной части пластин фибриллы имеют преимущественно продольное направление, по периферии — прибавляется тангенциальное и поперечное направления. Пластинки могут расслаиваться, а фибриллы одной пластинки могут продолжаться в соседние, создавая единую волокнистую основу кости. Кроме того, костные пластинки пронизаны отдельными фибриллами и волокнами, ориентированными перпендикулярно костным пластинкам, вплетающимися в промежуточные слои между ними, благодаря чему достигается большая прочность пластинчатой костной ткани. Из этой ткани построены и компактное, и губчатое вещества в большинстве плоских и трубчатых костей скелета. костная пластинка — периферический отдел эпифиза, непосредственно подлежащий под суставным хрящом и обладающий богатым кровотоком и иннервацией. Субхондральная кость служит прочным фундаментом для суставного хряща, поддерживая его нормальную структуру и трофику. Субхондральная кость жёстко спаяна с обызвествлённым слоем глубокой зоны суставного хряща. В процессе оссификации субхондральная костная пластинка становится краевой зоной окостенения эпифиза, блокирующей дальнейший энхондральный остеогенез с сохранением суставного хряща кнаружи от неё. Остеоны (гаверсовы системы) являются структурными единицами компактного вещества трубчатой кости. Они представляют собой цилиндры, состоящие из костных пластинок, как бы вставленных друг в друга. В костных пластинках и между ними располагаются тела костных клеток и их отростки, замурованные в костном межклеточном веществе. Каждый остеон отграничен от соседних остеонов так называемой спайной линией, образованной основным веществом, цементирующим их. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью и остеогенными клетками.

Образование кости на месте соединительной ткани

Скелет развивается из мезенхимы, представляющей зародышевую малодифференцированную соединительную ткань. Кости, формирующиеся на месте соединительной ткани, так называемые первичные кости, проходят два этапа развития: перепончатый и костный. Проще всего происходит развитие соединительнотканных, или перепончатых, костей, возникающих непосредственно из мезенхимы. Примером их могут служить плоские кости крыши черепа. Вначале на месте будущей плоской кости черепа имеется тонкая пластинка мезенхимы. Мезенхимные клетки в определенных местах этой пластинки начинают усиленно размножаться. Образуются сгущения мезенхимных клеток, имеющие вид тяжей, по ходу которых и начинается процесс остеогенеза. В центре каждого тяжа, между клетками мезенхимы, появляется пучок тонких коллагеновых волокон. Расположенные на его поверхности клетки мезенхимы начинают изменяться. Их цитоплазма делается базафильной, и они превращаются в остеобласты, связанные между собой отростками цитоплазмы. Клетки эти вырабатывают мукоидные вещества (оссеомукоид), которые спаивают между собой волокна. Образуется однородное промежуточное вещество будущей кости, которое отличается резкой оксифилией. По мере образования основного вещества часть остеобластов замуровывается в нем и превращается в костные клетки - остеоциты. Остальные остеобласты отходят на периферию и располагаются в один-два ряда на поверхности островков молодой кости

25 Образование кости на месте хряща. Кости, развивающиеся на месте хряща, называются вторичными и проходят три этапа: соединительнотканный, хрящевой и костный. При эндесмальном окостенении на месте будущих костей появляются островки окостенения в виде концентрации мезенхимных клеток, участвующих в образовании фиброзных волокон, и множества кровеносных сосудов. Из мезенхимных клеток дифференцируются клетки остеобласты, которые вырабатывают межклеточное вещество, состоящее из оссеина и солей кальция. Фиброзные волокна пропитываются межклеточным веществом и замуровывают остеобласты. Последние после этого переходят в состояние зрелых клеток костной такни - в остеоциты. Аналогично происходит перихондральное (периостальное) окостенение за счет клеток надхрящницы (надкостницы). Эндохондральное окостенение происходит путем прорастания в хрящевые закладки костей кровеносных сосудов с окружающей их мезенхимой. Мезенхима, прилегающая к образующейся кости, превращается в надкостницу. Для внутренней поверхности костей черепа надкостницей является наружный слой твердой мозговой оболочки. Процесс остеогенеза продолжается в направлении образования остеокластов (костедробителей) из мезенхимных клеток, окружающих сосуды. После рождения в скелете новорожденного преобладает хрящевая ткань с множеством ядер окостенения, называемых первичными.

Рост трубчатой кости.

Рост трубчатых костей.

Рост костей — процесс очень длительный. Он начинается у человека с ранних эмбриональных стадий и кончается в среднем к 20-летнему возрасту. В течение всего периода роста кость увеличивается как в длину, так и в ширину.

Рост трубчатой кости в длину обеспечивается наличием метаэпифизарной хрящевой пластинки, в которой проявляются два противоположных гистогенетических процесса. Один — это разрушение эпифизарной пластинки с образованием костной ткани, а другой процесс — непрестанное пополнение хрящевой ткани путем новообразования клеток. Однако со временем процессы разрушения хрящевой ткани начинают преобладать над процессами новообразования, вследствие чего хрящевая пластинка истончается и исчезает.

В метаэпифизарном хряще различают три зоны:

  • пограничную зону (интактного хряща),
  • зону столбчатых (активно делящихся) клеток и
  • зону пузырчатых (дистрофически измененных) клеток.

 

Рост трубчатой кости в ширину осуществляется за счет периоста. Со стороны периоста очень рано начинает образовываться концентрическими слоями тонковолокнистая кость. Этот аппозиционный рост продолжается до окончания формирования кости. Количество остеонов непосредственно после рождения невелико, но уже к 25 годам в длинных костях конечностей количество их значительно увеличивается. Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в каналах остеонов. Посттравматическая регенерация костной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга, и сохранена надкостница. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут образовываться хрящевые островки. Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. В условиях оптимальной репозиции и фиксации концов сломанной кости регенерация происходит без образования мозоли. Но прежде чем начнут строить кость остеобласты, остеокласты образуют небольшую щель между репонированными концами кости. На этой биологической закономерности основано применение травматологами аппаратов постепенного растягивания сращиваемых костей в течение всего периода регенерации.

 

Кровь: плазма и клетки крови, гемограмма, функция крови. Мезенхима.

Объём крови в организме взрослого человека - около 5 л. В крови различают 2 компонента: плазму (межклеточное вещество) - 55- 60 % объёма крови (около 3 л) и форменные элементы - 40-45 % объёма крови. Плазма состоит из воды 90%, органических 9% и неорганических 1% веществ. Белки составляют 6% всех веществ плазмы, среди них преобладают альбумины, глобулины и фибриноген. Эритроциты (красные кровяные тельца) - 4,3-5,3 у мужчин, и 3,9-4,5 1012 /л у женщин, лейкоциты (белые кровяные клетки) - 4,8-7,7 10 9/л, тромбоциты (кровяные пластинки) - 230-350 10 9/л. Гемограмма — клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др. Функции крови Транспортная. Поддержание гомеостаза. Защитная функция. Гемокоагуляция. Мезодермальная паренхи́ма, или мезенхи́ма — зародышевая соединительная ткань большинства многоклеточных животных и человека. Мезенхима возникает за счёт клеток разных зародышевых листков (эктодермы, энтодермы и мезодермы). Из мезенхимы образуются соединительная ткань, кровеносные сосуды, главные мышцы, висцеральный скелет, пигментные клетки и нижний слой соединительнотканной части кожи.

2. Эритроциты. Эритроциты (красные кровяные тельца) - безъядерные форменные элементы крови, содержащие гемоглобин. Основная функция эритроцитов - транспортировка кислорода и углекислого газа. Эритроциты составляют основную массу форменных элементов крови. Двояковогнутый диск эритроцита обеспечивает максимальное соотношение площади поверхности к объему. Помимо участия в тканевом дыхании, эритроциты выполняют питательную и защитную функции - они доставляют питательные вещества к клеткам организма, а также, связывают токсины и переносят на своей поверхности антитела. Кроме этого, эритроциты обеспечивают поддержание кислотно-основного равновесия в крови. Содержащиеся в эритроцитах ферменты катализируют жизненно важные биохимические процессы. Эритроциты принимают участие в процессе свертывания крови. Средний диаметр эритроцитов человека 7-8 мкм. Средняя продолжительность жизни эритроцитов составляет 3-4 месяца. Старые эритроциты разрушаются в селезенке. На смену умершим эритроцитам приходят молодые формы эритроцитов – ретикулоциты.. В норме их содержится в крови 0,2-1,2% от общего числа эритроцитов. Ретику лоциты содержат зернисто-сетчатые структуры - стареющие митохондрии, остатки эндоплазматической сети и рибосом. Наличие зернисто-сетчатых структур выявляется при специальной окраске - крезиловой синькой. 3 Лейкоциты. Ядерные клетки шаровидной формы по размеру - крупнее эритроцитов. В 1 л крови взрослого человека содержится 4,8-7,7x 10 9. В цитоплазме лейкоцитов находятся гранулы первичные азурофильные (лизосомы) и вторичные. В зависимости от типа гранул лейкоциты делят на гранулоциты (зернистые) и агранулоциты (незернистые). Гранулоциты (нейтрофилы, базофилы и эозинофилы) содержат специфические и неспецифические гранулы. Агранулоциты (моноциты и лимфоциты) содержат только неспецифические азурофильные гранулы.Лейкоциты имеют сократительные белки (актин, миозин) и способны выходить из кровеносных сосудов, проникая между эндотелиальными клетками. Лейкоциты участвуют в защитных реакциях, уничтожая микроорганизмы и захватывая инородные частицы, осуществляя реакции гуморального и клеточного иммунитета.Лейкоцитарная формула (лейкограмма) — процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом. Лейкоцитарная формула здорового взрослого человека (предельные колебания, %)

Базофи лы Эозино филы Нейтрофилы Лимфо циты Моноци ты
миэло циты юные палочко-ядерные Сегменто- ядерные
0,5—1 2—4 0—1 3—5 51—67 21—35 4—8

4. Нейтрофилы, эозонофилы и базофильные гранулоциты. Нейтрофилы: Размеры 10-12 мкм. Продолжительность жизни 8 суток. Нейтрофил содержит несколько митохондрий и большое количество гликогена. В зависимости от степени дифференцировки различают палочкоядерные и сегментоядерные нейтрофилы. Содержание в крови палочкоядерных 2-5%, а сегментоядерных форм 43-59 %. Ядро сегментоядерных довольно компактное, состоит из 2-3 сегментов, соединенных мостиками ядерного вещества. В нейтрофилах женщин один из сегментов ядра содержит вырост в форме барабанной палочки – тельце Барра. Цитоплазма, окрашивается в розовый цвет, содержит мелкую обильную зернистость, принимающую синевато-розовый оттенок. Нейтрофилы обладают выраженной фагоцитарной активностью и участвуют в острой воспалительной реакции. Главная их функция – разрушение и захват тканевых обломков и микроорганизмов. Эозинофилы: составляют 1-5% лейкоцитов циркулирующих в крови. Размер эозинофила в крови больше 12 мкм. Продолжительность жизни 8-14 дней. Ядро часто состоит из двух сегментов, реже трех и более. В цитоплазме содержится хорошо развитая гранулярная эндоплазматическая сеть, небольшое количество цистерн агранулярной эндоплазматической сети, скопление рибосом, митохондрии и гликоген.Эозинофилы способны к фагоцитозу, хоть и в меньшей степени, чем нейтрофилы. Основной их функцией является уничтожение паразитов и участие в аллергических реакциях. Эозинофилы перемещаются в область с высокой концентрацией гистамина и оказывают здесь антигистаминное действие: тормозят освобождение гистамина из базофилов, а также адсорбируют его, фагоцитируют и инактивируют. Базофилы: составляют 0-1% общего числа лейкоцитов циркулирующей крови. Базофилы располагаются в красном костном мозге и кровеносном русле. В крови циркулируют 1-2 суток. Могут покидать кровоток, но в отличие от других лейкоцитов их способность к амебоидному движению ограничена. Величина от 8 до 10 мкм.Ядро клеток широкое, неправильной лопастовидной формы. Часто имеют трехдольное S образное ядро. Содержат все виды органел. Гранулы крупные (0,5-1,2 мкм) метохроматически окрашенные. Имеют овальную или округлую форму с плотным содержимым. В гранулах содержится протеогликаны (смесь гепарина с хондроитинсульфатом), пероксидаза, гистамин, медиаторы воспаления. При активации базофила происходит быстрый экзоцитоз содержимого гранул (дегрануляция). Выделение гистамина других вазоактивных факторов при дегрануляции вызывают развитие аллергической реакции немедленного типа. Такие реакции характерны для астмы и анафилактического шока.

5. Лимфоциты и моноциты. Лимфоциты: В нормальных условиях 27-45%. Клетки размером с эритроцит. Продолжительность жизни лимфоцитов колеблется в широких пределах от нескольких часов до 5 лет. Лимфоциты играют центральную роль в иммунных реакциях. Лимфоциты выходят из сосудов в соединительную ткань в ответ на специфические сигналы. Лимфоциты могут мигрировать через базальную мембрану эпителиев и внедряться в эпителии. Ядро занимает большую часть клетки, имеет круглую, овальную или слегка бобовидную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет. В части клеток в цитоплазме обнаруживается окрашивающаяся в вишневый цвет азурофильная зернистость лимфоцитов. Лимфоциты подразделяют на различные категории по их величине: малые (4,.5-6 мкм), средние (7-10 мкм) и большие (10-18 мкм). К лимфоцитам относят сходные морфологически, но различающиеся функционально клетки. Выделяют следующие типы: В-лимфоциты, Т-лимфоциты (дифференцировка в тимусе) и NК-клетки. Т – лимфоциты это преимущественно лимфоциты крови (80%). Клетка предшественница Т – лимфоцитов поступает в тимус из красного костного мозга. Зрелые лимфоциты покидают тимус и их обнаруживают в периферической крови или лимфоидных органах В лимфоциты составляют 10% лимфоцитов крови. Плазматические клетки, в которые они дифференцируются, способны вырабатывать против конкретных антител соответствующие антигены. NK клетки - не Т, и не В лимфоциты. Составляют примерно 10% от всех лимфоцитов. Содержат цитолитические гранулы, уничтожающие трансформированные инфицированные вирусом и чужеродные клетки. Моноциты: Самые крупные лейкоциты размером от 12 до 20 мкм. Содержание в условиях нормы 4-9%. Ядро большое, рыхлое, с неравномерным распределением хроматина. Форма ядра бобовидная лопастовидная, подковообразная, реже круглое или овальное. Довольно широкая кайма цитоплазмы окрашивающейся менее базофильно чем у лимфоцитов. Может обнаруживаться мелкая азурофильная зернистость. В цитоплазме содержатся многочисленные лизосомы и вакуоли. Имеются мелкие удлиненные митохондрии. Комплекс Гольджи развит хорошо. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. В переваривании участвуют лизосомные ферменты, а также формируемые внутриклеточно перекиси. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD.

6. Тромбоциты: это безъядерные фрагменты цитоплазмы, отделившиеся в красном костном мозгу от мегакариоцитов (гигантских клеток) и циркулирующие в крови. Имеют размер 2-4 мкм. Общее количество в крови 230-350 109 на 1л. Продолжительность жизни 4 дня. В центральной части тромбоцит содержит грануломер - выраженную зернистость, которая представлена гранулами, глыбками гликогена, ЭПС, митохондриями и является азурофильной. Периферическая часть тромбоцита - гомогенный гиаломер, который окрашивается по-разному в зависимости от возраста тромбоцита. На поверхности тромбоцита имеется большое количество фосфатных групп - компонентов мембранных фосфолипидов и фосфопротеинов.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.114.38 (0.029 с.)