Структурные связи в грунтах. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структурные связи в грунтах.



Структурные связи в грунтах – связи между частицами грунта (минеральные зёрна, обломки горных пород и пр.). Именно структурные связи во многом определяют физико-механические свойства грунта. Структурные связи формируются в результате сложных физико-химических процессов (уплотнение, старение и синерезис, конденсация содержащихся в природе соединений, адсорбция, кристаллизация)

По своей природе эти взаимодействия подразделяются на несколько видов:

  1. Химические (ковалентные, ионные).
  2. Физические и физико-химические (молекулярные, электростатические, магнитные, ионно-электростатические, капиллярные).
  3. Механические (зацепления).

Скальным грунтам присущи жесткие кри­сталлизационные связи, энергия которых соизмерима с внутри-кристаллической энергией химической связи отдельных атомов. По­этому блоки слаботрещиноватых скальных пород обладают очень высокой прочностью и малой деформируемостью. При разрушении кристаллизационные связи не восстанавливаются - блоки породы расчленяются трещинами на отдельные куски. Снижение прочности и увеличение деформируемости скальных грунтов в условиях естест­венного залегания обусловлено прежде всего их трещиноватостью.

5) Трещины и их влияние на свойства грунтов.

Трещины частой сетью разбивают скальные, плотные глинистые и даже некоторые песчаные грунты. Очевидно, что они существенно влияют на свойства грунта. По степени расчлененности трещинами удобно различать два крайних типа скальных грунтов:

монолитный грунт, в котором трещины если и есть, то не пересекаются;

разборный грунт, в котором трещины образуют густую сеть, пересекаются и полностью разделяют обломки породы.

Между этими двумя крайними типами помещается переходный тип - трещиноватый скальный грунт, в котором трещины частично пересекаются, но не полностью делают блоки породы, а между монолитными блоками сохраняются мостики (целики) прочного скального грунта.

На свойства скального грунта значительное влияние оказывает частота трещин. При расстоянии между трещинами 10 см и менее сеть трещин следует называть частой. Если трещины следуют через 10...100 см, это сеть средней частоты. При расположении трещин через 100 см и более сеть трещин считается редкой. Древние плотные глинистые грунты всегда имеют сеть трещин, по которым идет замачивание массива, отрыв и соскальзывание при оползнях.

6) Физические свойства грунта
характеризуют физические состояние грунта и способность изменять это состояние под влиянием физико-химических факторов. Они оказывают значительное влияние на технологию производства земляных работ.


Плотность грунта – отношение массы грунта m, включая массу воды в его порах, к объему грунта V

ρ = m/V, г/см³.

 

Влажность грунта характеризует насыщенность грунта водой и определяется отношением массы содержащейся в нём воды m2 к массе твёрдых минеральных частиц грунта m1. Сухие грунты имеют влажность до 5%, влажные – от 5 до 30%, мокрые – свыше 30%.
ω = m2/m1, %.

 

Удельный вес грунта – вес занимаемого грунтом объёма

γ = ρ×g, кН/м³ (g = 9,81 м/с²).

 

Относительное содержание твёрдых частиц – отношение объёма твёрдых частиц V1 к объёму грунта

m = V1/V = ρd/ρs, %.

 

Пористость грунта – отношение объема пор Vпор к полному объему V, занимаемого грунтом

где ρd – плотность сухого грунта, ρs – плотность твердых частиц грунта.
n = Vпор/V = 1 - ρd/ρs, %,

Kоэффициент пористости грунта – отношение объема пор в образце к объему, занимаемому его твердыми частицами

e = ρs/ρd - 1 = n/(1-n).
Водонасыщение – степень заполнения объема пор грунта водой. S = (ρs×ω)/(n×ρω),ρω – плотность воды.

7) Kлассификация грунтов

 

Грунты подразделяются на два класса: скальные - грунты с жесткими (кристаллизационными или цементационными) структурными связями и нескальные - грунты без жестких структурных связей.

Скальные – грунты с жесткими структурными связями залегают в виде сплошного массива или в виде трещиноватого слоя. К ним относятся магматические (граниты, диориты и др.), метаморфические (гнейсы, кварциты, сланцы и др.), осадочные сцементированные (песчаники, конгломераты и др.) и искусственные.

Они водоустойчивы, несжимаемы, имеют значительную прочность на сжатие и не промерзают и при отсутствии трещин и пустот являются наиболее прочными и надежными основаниями. Трещиноватые слои скальных грунтов менее прочны.

Скальные грунты разделяют по пределу прочности, растворимости, размягчаемости и засоленности.

Нескальные грунты – это осадочные породы без жестких структурных связей. По крупности частиц и их содержанию делят на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы. Характерной особенностью этих грунтов является их раздробленность и дисперсность, отличающие их от скальных весьма прочных пород.

 

Крупнообломочные – несвязные обломки скальных пород с преобладанием обломков размером более 2 мм (свыше 50%). По гранулометрическому составу крупнообломочные грунты подразделяют на: валунный d>200 мм (при преобладании неокатанных частиц – глыбовый), галечниковый d>10 мм (при неокатанных гранях – щебенистый) и гравийный d>2 мм (при неокатанных гранях – дресвяный). К ним можно отнести гравий, щебень, гальку, дресву.

Эти грунты являются хорошим основанием, если под ними расположен плотный слой. Они сжимаются незначительно и являются надежными основаниями.

При наличии более 40% песчаного заполнителя или более 30% пылевато-глинистого от общей массы учитывается только мелкая составляющая грунта, так как именно она будет определять несущую способность.

Крупнообломочный грунт может быть пучинистым, если мелкая составляющая — пылеватый песок или глина.

Песчаные – состоят из частиц зерен кварца и других минералов крупностью от 0,1 до 2 мм, содержащие глины не более 3% и не обладают свойством пластичности. Пески разделяют по зерновому составу и размеру преобладающих фракций на гравелистые лески d>2 мм, крупные d>0,5 мм, средней крупности d>0,25 мм, мелкие d>0,1 мм и пылеватые d=0,05 - 0,005 мм.

Частицы грунта крупностью от d=0,05 - 0,005 мм называют пылеватыми. Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых. Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым.

Чем крупнее и чище пески, тем большую нагрузку может выдержать слой основания из него. Сжимаемость плотного песка невелика, но скорость уплотнения под нагрузкой значительна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластичности.

Гравелистые, крупные и средней крупности пески значительно уплотняются под нагрузкой, незначительно промерзают.

Тип крупнообломочных и песчаных грунтов устанавливается по гранулометрическому составу, разновидность – по степени влажности.

Пылевато-глинистые грунты содержат пылеватые (размером 0,05 – 0,005 мм) и глинистые (размером менее 0,005 мм) частицы. Среди пылевато-глинистых грунтов выделяют грунты, проявляющие специфические неблагоприятные свойства при замачивании, – просадочные и набухающие. К просадочным относятся грунты, которые под действием внешних факторов и собственного веса при замачивании водой дают значительную осадку, называемую просадкой. Набухающие грунты увеличиваются в объеме при увлажнении и уменьшаются в объеме при высыхании.

Глинистые – связные грунты, состоящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйчатую форму, с небольшой примесью мелких песчаных частиц. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры глинистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение.

Глинистые грунты делятся в зависимости от числа пластичности на глины (с содержанием глинистых частиц более 30%), суглинки (10...30%) и супеси (З...10%).

Несущая способность глинистых оснований зависит от влажности, которая определяет консистенцию глинистых грунтов. Сухая глина может выдерживать довольно большую нагрузку. Тип глинистого грунта зависит от числа пластичности, разновидность – от показателя текучести.

Лёссовые и лёссовидные – глинистые грунты с содержанием большого количества пылеватых частиц (содержат более 50% пылевидных частиц при незначительном содержании глинистых и известковых частиц) и наличием крупных пор (макропор) в виде вертикальных трубочек, видимых невооруженным глазом. Эти грунты в сухом состоянии имеют значительную пористость - до 40% и обладают достаточной прочностью, но при увлажнении способны давать под нагрузкой большие осадки. Они относятся к просадочным грунтам (под действием внешних факторов и собственного веса дают значительную просадку) и при возведении на них зданий требуют надлежащей защиты оснований от увлажнения. С органическими примесями (растительный грунт, ил, торф, болотный торф) неоднородны по своему составу, рыхлы, обладают значительной сжимаемостью. В качестве естественных оснований под здания непригодны (при увлажнении полностью теряют прочность и возникают большие, часто неравномерные, деформации - просадки). При использовании лёсса в качестве основания необходимо принимать меры, устраняющие возможность его замачивания.

Плывуны – это грунты, которые при вскрытии приходят в движение подобно вязко-текучему телу, образуются мелкозернистыми пылеватыми песками с илистыми и глинистыми примесями, насыщенными водой. При разжижении становятся сильно подвижными, фактически, превращаются в жидкообразное состояние. Различают плывуны истинные и псевдоплывуны. Истинные плывуны характеризуются присутствием пылевато-глинистых и коллоидных частиц, большой пористостью (> 40%), низкими водоотдачей и коэффициентом фильтрации, особенностью к тиксотропным превращениям, оплыванием при влажности 6 - 9% и переходом в текучее состояние при 15 - 17%. Псевдоплывуны – пески, не содержащие тонких глинистых частиц, полностью водонасыщенные, легко отдающие воду, водопроницаемые, переходящие в плывунное состояние при определенном гидравлическом градиенте. Они малопригодны в качестве естественных оснований.

 

Биогенные грунты характеризуются значительным содержанием органических веществ. К ним относятся заторфованные грунты, торфы и сапропели. К заторфованным грунтам следует отнести песчаные и пылевато-глинистые грунты, содержащие 10 - 50% (по массе) органических веществ. Если их больше 50%, то это торф. Сапропели - это пресноводные илы.

 

Почвы – это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием.

Почвы и биогенные грунты служить основанием для здания или сооружения не могут. Первые - срезают и используют для целей земледелия, вторые - требуют специальных мер по подготовке основания.

Насыпные – образовавшиеся искусственно при засыпке оврагов, прудов, мест свалки и т.п. или грунты природного происхождения с нарушенной структурой в результате перемещения грунта. Свойства таких грунтов очень различны и зависят от многих факторов (вид исходного материала, степень уплотнения, однородность и т. д.). Обладают свойством неравномерной сжимаемости, и в большинстве случаев их нельзя использовать в качестве естественных оснований под здания. Насыпные грунты весьма неоднородны; кроме того, различные органические и неорганические материалы существенно ухудшают его механические свойства. Даже при отсутствии органических примесей, в некоторых случаях, они остаются слабыми на протяжении многих десятилетий.

В качестве основания для зданий и сооружений насыпной грунт рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Например, слежавшиеся более трёх лет, особенно пески, могут служить основанием под фундамент небольших строений, при условии, что в нем отсутствуют растительные останки
Источник:


8) Cвязb физических и механических характеристик грунтов

 

Характерные свойства грунтов длительное время воспринимать внешние нагрузки при деформациях оснований, не препятствующих нормальной эксплуатации зданий и сооружений, называют их строительными свойствами.
Под действием внешней нагрузки в грунте происходит уплотнение — уменьшение объема пор в результате переупаковки минеральных частиц, а также их взаимного перемещения. Процессы деформаций осложняются из-за наличия сил сцепления между отдельными минеральными частицами и содержания в порах грунта воды, находящейся во взаимодействии с этими частицами.
Крупнообломочные грунты под нагрузкой уплотняются мало. Их несущая способность велика, что объясняется высоким сопротивлением сдвигу. Кроме того, они обладают высокой водопроницаемостью и слаборазмываемы. Насыщение водой практически не оказывает влияния на их строительные свойства.
Несущая способность песков, состоящих из отдельных не связанных между собой зерен, определяется сопротивлением их сдвигу. Она тем больше, чем шероховатее и крупнее зерна и чем более плотно они расположены. Увлажнение песков приводит к уменьшению их несущей способности, причем влияние этого фактора повышается с уменьшением крупности песков.
Под действием давления сооружения на водонасыщенные песчаные грунты происходят отжатие воды из пор и уменьшение их объема, а следовательно, осадка основания. Песчаные грунты обладают высокой водопроницаемостью, в связи с чем отжатие воды из пор и осадка основания происходят за короткий период. Это является ценным свойством песчаных оснований, так как осадка сооружений происходит преимущественно в процессе строительства, что улучшает условия эксплуатации сооружений.
Важной характеристикой строительных свойств песков является угол внутреннего трения φ. Он возрастает с увеличением их плотности, размеров, твердости и угловатости частиц и уменьшается с повышением влажности, а также при сотрясениях, возникающих при сильных землетрясениях, взрывах и воздействии вибрации. Угол внутреннего трения песка изменяется в зависимости от его плотности от 25 до 45° при средних значениях 30—35°. Например, увеличение пористости песча­ного или пылевато-глинистого грунта (увеличение коэффициента пористости) при прочих равных условиях непременно повлечет за собой снижение его прочности и повышение деформируемости. Соответственно увеличение влажности (показателя консистенции) глинистого грунта, также при прочих равных условиях, приведет к снижению его прочности и повышению деформируемости. Следо­вательно, установление связей между физическими и механическими характеристиками грунтов в определенных условиях правомочно.


9) Геологическое строение оснований

Сооружение редко располагается на каком-либо одном грунте. Обычно в основании оказывается несколько типов грунтов.

Paзличают такие понятия как: инженерно-геологические элементы (однородные части в геологической среде); границы между этими элементами; мощность слоя; линза (внутренне однородное геологическое тело, ограниченное в пределах рассматриваемой области замкнутой поверхностью); жила (внутренне однородное геологическое тело, протяженное и пересекающее другие слои); зона (область перехода от грунтов с одними свойствами к грунтам с другими свойствами). Среди грунтов, на которых возводятся сооружения, есть несколько характерных типов особенных образований. Строительство на таких грунтах сопряжено со специальными мероприятиями, несоблюдение которых часто приводит к авариям. К таким грунтам относят мерзлые, вечномерзлые, лессовые, набухающие, слабые водонасыщенные глинистые, засоленные, насыпные грунты, торфы, заторфованные грунты. Эти грунты называют структурно – неустойчивыми грунтами.

Грунты всех видов относятся к мерзлым, если они имеют отрицательную температуру и содержат в своем составе лед. Грунты называют вечномерзлыми, если в условиях природного залегания они находятся в мерзлом состоянии непрерывно (без оттаивания) в течение многих лет (трех и более) лет.

Мерзлые и вечномерзлые грунты из-за наличия в них ледо-цементных связей при отрицательной температуре являются очень прочными и малодеформируемыми природными образованиями.

При положительной температуре свойства таких грунтов резко меняются. При оттаивании порового льда структурные льдоцементные связи лавинно разрушаются и возникают значительные деформации. Многие виды вечномерзлых грунтов, особенно сильнольдистые глинистые грунты, при этом могут переходить в разжиженное состояние.

10) Структурно-неустойчивые грунты

это грунты, обладающие в природном состоянии структурными связями, которые при определенных воздействиях снижают свою прочность или полностью разрушаются. Эти воздействия могут заключаться в существенном изменении температуры, влажности, приложении динамических усилий. Причины указанных процессов заключаются в том, что струк­турные связи в этих грунтах обусловлены легко поддающимися разрушению при определенных воздействиях факторами.

К структурно-неустойчивым грунтам относят грунты: лессовые, структура которых нарушается при замачивании под нагрузкой; мерзлые и вечномерзлые, структура которых нарушается при оттаивании; рыхлые пески, резко уплотняющиеся при динамических воздействиях; илы и чувствительные глины, деформационные и прочностные свойства которых резко изменяются при нарушении их природной структуры. Также к особым грунтам относят: набухающие грунты, которые при увлажнении способны существенно увеличиваться в объеме даже под нагрузкой; торфы и заторфованные грунты, обладающие очень большой сжимаемостью и малой прочностью; скальные и полускальные грунты, обладающие, как правило, высокой прочностью и малой деформативностью.



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 2133; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.18.87 (0.018 с.)