Природные (естественные) абразивные материалы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Природные (естественные) абразивные материалы.



· Песчаник (желтого цвета) состоит из кварца, глинистых и известковых соединений.

· Наждак (серого цвета) содержит до 60 % окиси алюминия Al2O3, остальное Fe2O3 и SiO2.

· Алмаз – минерал, состоящий из кристаллического углерода (аллотропическая форма углерода). Обладает самыми высокими твердостью, модулем упругости, низким коэффициентом трения и высокой прочностью. Применяется для производства высокотехнологического инструмента, порошков и паст.

· Корунд – (коричневого цвета) является весьма твердым абразивным материалом. Он состоит из 90 - 95 % Al2O3, Fe2O3 и SiO2. корунд применяется для приготовления абразивных порошков и шкурок.

· Гранат – соединение алюминия, хрома, железа, а также кальция, кремния, марганца с кремнекислотой.

 

Искусственные абразивные материалы.

· Электрокорунд получается плавлением окиси алюминия или боксита в электропечах при температуре 1700 - 2000º С. Он представляет собой кристаллическую окись алюминия (99 % Al2O3). Это абразив высокой твердости. Промышленностью выпускаются следующие разновидности электрокорунда: нормальный (коричневого или серого цвета, содержит 92 – 96 % Al2O3, его твердость 1900-2000 HV), белый(белого или розового цвета), легированный, монокорунд (красного цвета) и сферокорунд.

· Карбид кремния SiC (карборунд) получается сплавлением кварцевого песка Si с угольным порошком С. Температура плавления 2000º С. Твердость 3300 - 3600 НV. Промышленность выпускает два вида карбида кремния: черный (КЧ) и зеленый (КЗ).

· Карбид бора В4С получается сплавлением кристаллической борной кислоты с углеродом, содержит бора 70-78 %, а углерода 20-24 %. Карбид бора черного цвета, отличается высокой твердостью, значительно превосходящей твердость карбида кремния. Применяется в виде порошка при шлифовании очень твердых материалов и стекла.

· Кубический нитрид бора (Эльбор) – BN (СТМ) – синтетический сверхтвердый материал представляющий собой химическое соединение бора (43,6 %) и азота (56,4 %).

Применение.

Нормальный электрокорунд – обработка углеродистых незакаленных сталей, чугунов, цветных металлов.

Белый электрокорунд – обработка углеродистых, легированных, быстрорежущих сталей.

КЗ – обработка инструмента из твердых сплавов, керамики и правка шлифовальных кругов.

КЧ – обработка чугуна, цветных металлов, неметаллических материалов.

Абразивные круги на основе алмаза и нитрида бора используют для заточки и доводки режущего инструмента.

 

Абразивные материалы характеризуются абразивной способностью. Абразивная способность – это основной показатель качества абразива. Абразивная способность определяется массой снимаемого при шлифовании материала до затупления зерен. По режущей способности абразивные материалы располагаются в следующем порядке: алмаз, карбид бора, карбид кремния, монокорунд, наждак, кремень.

 

Таблица.9. Группы абразивных материалов по величине зерна.

 

Группа Номер зернистости
Шлифзерно 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16.
Шлифполрошки 12, 10, 8, 6, 5, 4, 3.
Микропорошки М63, М50, М40, М28, М20, М14.
Тонкие микропорошки М10, М7, М5.

 

Для изготовления абразивных инструментов применяют две основные группы связок:

· Неорганические – керамическая, магнезиальная, силикатная;

· Органическая – бакелитовая, глифталевая, вулканитовая.

 

Керамическая связка (К) состоит из глины, полевого шпата, кварца и др., в которые для повышения пластичности добавляют клеящие вещества (жидкое стекло, декстрин и т.д.). Недостаток – чувствительность и ударам и изгибающим нагрузкам.

Магнезиальная (М) – смесь каустического магнезита и раствора хлористого магния, твердеющая на воздухе (магнезиальный цемент). Недостаток – гигроскопичность, повышенный износ.

Силикатная связка (С) имеет основным связующим веществом жидкое стекло (силикат натрия), которое при смешивании с наполнителями (окись цинка, мел, глина).

Бакелитовая связка (Б) – искусственная фенолформальдегидная смола, применяется в жидком состоянии (Б1) или порошкообразном (Б2). Имеет повышенную прочность и упругость.

Вулканитовая связка(В) состоит из искусственного каучука с вулканизирующими добавками.

 

Инструменты, изготовленные из абразивных материалов, имеют различную твердость (Таблица.10.).

Твердость – сопротивление связки вырыванию зерен с поверхности инструмента под действием внешних сил.

Таблица.10. Условное обозначение твердости абразивных материалов.

Твердость абразивного инструмента Обозначение Подразделение
Мягкий М М1, М2, М3.
Среднемягкий СМ СМ1, СМ2.
Средний С С1, С2.
Среднетвердый СТ СТ1, СТ2, СТ3.
Твердый Т Т1, Т2.
Весьма твердый ВТ ВТ1, ВТ2.
Чрезвычайно твердый ЧТ ЧТ1, ЧТ2.

 

Шлифовальные круги маркируют условными сокращенными обозначениями с указанием завода-изготовителя, марки абразивного материала, номера зернистости, твердости, вида связки, рабочей окружной скорости, типоразмера и класса инструмента.

Пример маркировки шлифовального круга:

ПП 450 50 127 ЗАЗ Э 50 С1 Б

ПП – круг плоский прямоугольного профиля;

450 – наружный диаметр круга;

50 – высота круга;

127 – диаметр отверстия круга;

ЗАЗ – Златоустовский абразивный завод;

Э – электрокорунд;

50 – зернистость;

С1 – средняя твердость;

Б – бакелитовая связка.

К абразивным материалам также относятся:

· Шлифовальные шкурки;

· Абразивные и алмазные пасты.

В машиностроении применяют абразивные шкурки на бумажной и тканевой основе двух типов: водостойкие и для сухого шлифования.

Водостойкие, предназначены для шлифования с водяным или керосиновым охлаждением. Шкурки для сухого шлифования используют при масляном, керосиновом и уайт-спиртовом охлаждении.

Абразивно-доводочные пасты в зависимости от применяемого материала делят на две группы:

· Твердые (алмаз, карбид бора, наждак);

· Мягкие (окись хрома, окись железа, кварц).

Кроме абразивных материалов в состав паст для связки вводят: химически активные олеиновая и стеариновая кислоты, скипидар, парафин, канифоль и другие вещества.

Для притирочных и доводочных работ широко применят пасту ГОИ, разработанную Государственным оптическим институтом. В зависимости от требуемой шероховатости поверхности применяют три сорта этой пасты: тонкую (светло-зеленого цвета), среднюю (цвет темно-зеленый) и грубую (цвет темно-зеленый, почти черный).

 

Лакокрасочные материалы.

Лакокрасочные покрытия являются одним из средств защиты металлов и сплавов от коррозии и предназначены для создания декоративных покрытий на деталях из различных материалов.

Лакокрасочные покрытия (ГОСТ 9.072-77) – это покрытие, полученное нанесением лакокрасочного материала на окрашиваемую поверхность с последующим формированием пленки.

Лакокрасочное покрытие должно отвечать следующим требованиям:

· Порочно связываться с окрашиваемой поверхностью, т.е. иметь высокую адгезию;

· Обладать высокой прочностью, твердостью и необходимой эластичностью;

· По возможности меньше пропускать влагу, пары жидкостей, газы, солнечные лучи и не изменять своих свойств под действием перечисленных факторов. Стабильность покрытия в условиях воздействия воды и ее паров, воздуха и солнечного света называется атмосферостойкостью;

· В случае повреждения легко восстанавливаться;

· Ввиду массового производства быть дешевыми.

 

Компоненты лакокрасочных материалов.

Обязательным компонентом основных лакокрасочных материалов, к которым относятся лаки, грунтовки, шпатлевки и краски, является пленкообразующее вещество (пленкообразователь).

Пленкообразователи лакокрасочных материалов представляют собой полимеры или олигомеры, либо их композиции, способные формировать на поверхности пленки в результате физических, химических или физико-химических превращений.

 

Применение находят как жидкие, так и твердые пленкообразователи. К жидким пленкообразователям относятся некоторые растительные масла (льняное, конопляное, подсолнечное и др.). Данные масла, обработанные химически и термически, являются основой различных сортов олифы.

К твердым пленкообразователям принадлежат многие природные смолы (битумы, канифоль, шеллак, янтарь и др.), эфиры целлюлозы (нитроцеллюлоза) и разнообразные синтетические высокополимеры (поликонденсационные смолы, полимеризационные смолы, синтетические каучуки, фторопласты). На изделие пленкообразователи можно наносить как в расплавленном, так и в растворенном состоянии. При нанесении пленкообразователя в растворенном виде обязательно используют растворитель. К растворителям относятся: спирт (этиловый и метиловый), скипидар (терпентинное масло) – продукт сухой перегонки хвойной древесины, уайт-спирит (бензин-растворитель), бензол (токсичная жидкость), толуол и др.

Раствор твердого пленкообразователя в соответствующем растворители называется лаком.

Большая часть лаков используется не в чистом виде, а идет наряду с олифой для приготовления красок, грунтовок и других материалов. С этой целью в лак или олифу вводят пигмент. В зависимости от вида пленкообразователя получают два типа красок:

 

олифа + пигмент масляная краска;

 

лак + пигмент эмалевая краска.

 

Пигменты представляют собой минеральные вещества, получаемые из природных материалов: руд, окислов металлов (железа, цинка, свинца, титана и др.) или минералов (мел, охра), либо изготавливаемые искусственно. Основное назначение пигментов – сообщить краске определенный цвет. Пигменты в отличии от красителей нерастворимы в лаках и олифе и должны постоянно поддерживаться во взвешенном состоянии. Таким образом, масляные и эмалевые краски представляют собой суспензии.

Пленкообразователи, в которых за время высыхания не происходит химических превращений, называются непревращаемыми, а полученные из них покрытия – обратимыми.

Высохшее покрытие на основе непревращаемого пленкообразователя снова становится жидким при попадании на него растворителя. На этом основано получение многослойного покрытия: каждый последующий слой жидкой краски растворяет поверхностную часть предыдущего просушенного слоя, в результате чего происходит их слияние и они оказываются прочно соединенными друг с другом.

Пленкообразователи способные в процессе высыхания претерпевать химические превращения, называются превращаемыми.

Высохшие покрытия на основе превращаемых пленкообразователей становятся твердыми и не способными к переходу в жидкое состояние под действием растворителей. На этом основании такие покрытия можно считать необратимыми. К превращаемым пленкообразователям относится олифа, следовательно, покрытия из высохших масляных красок являются необратимыми.

Кроме пленкообразователей, красителей и пигментов, в состав лакокрасочных материалов могут вводиться разбавители (для снижения вязкости выпускаемых товарных красок(, пластификаторы (для повышения прочности покрытий), сиккативы (для ускорения процесса высыхания красок)и др.

 

 

Обозначение лакокрасочных материалов.

В соответствии с ГОСТ 9825- 73 обозначение лакокрасочных материалов состоит из пяти групп знаков:

1 группа – название материала полным словом (эмаль, грунт и т.п.);

2 группа – условное обозначение типа пленкообразователя (Таблица.11);

 

Таблица.11. Обозначение основных пленкообразователей

Основа по химическому составу Индекс
Алкидно-стирольная АСТ
Битумная, пековая БТ
Поливинилацетатная ВА
Поливинилацетальная ВЛ
Глифталевая ГФ
Кремнийорганическая КО
Каучуковая КЧ
Масляная МА
Меламиновая МЛ
Масляно- и алкидно-стирольная МС
Мочевинная МЧ
Нитроцеллюлозная НЦ
Пентафталевая ПФ
Винил-, поливинилхлоридная или перхлорвиниловая ХВ
Сополимерная винилхлоридная ХС
Фенолалкидная ФА
Фенольная ФЛ
Эпоксидная ЭП

 

3 группа – показывает основное назначение материала (Таблица.12.);

 

 

Таблица.12. Классификация лакокрасочных материалов по назначению.

Назначение материала Группа
Атмосферостойкий  
Стойкий внутри помещений и ограниченно атмосферостойкий  
Консервационный  
Водостойкий  
Специальный (покрытия обладающие особыми свойствами)  
Маслобензостойкие  
Химически стойкие  
Термостойкие  
Электроизолирующий  
Грунтовки *  
Шпатлевки *  

* грунтовками называют лакокрасочные материалы, наносимые непосредственно на поверхность металла и характеризующиеся хорошей адгезией (сцеплением) как с металлом, так и с последующими слоями шпатлевки и эмали.

* шпатлевками называют лакокрасочные материалы, предназначенные для выравнивания поверхности перед нанесением декоративных верхних слоев эмали.

 

4 группа – означает порядковый (регистрационный) номер, присвоенный данному материалу, из одной, двух или трех цифр;

5 группа - показывает цвет материала.

Пример обозначения: Эмаль НЦ-11 Черная.

Для водоразбавляемых, водоэмульсионных, порошковых, пластизольных, органозольных ЛКМ, а также без активных растворителей перед второй группой знаков кода ставится индекс, определяющий разновидность материала: Б – без активного растворителя; В – водоразбавляемые; ОД – органозольные; ПД – пластизольные; П. – порошковые; Э – эмульсионные.

Например,

Эмаль Б-ЭП-123 противокоррозионная.

 

Таблица.13. Области применения некоторых лакокрасочных материалов.

Наименование и обозначение Назначение
Лаки ПФ-170 и ПФ-171 ГОСТ 15907-70 Добавление к эмали ПФ-115для придания последнему слою блеска.
Эмаль ПФ-115 ГОСТ 6465-76 Окрашивание кузовов, капотов, оперения автобусов.
Эмали ГФ - 1147 ПФ – 1147 водоэмульсионные ТУ 6-10-1361-78 Для защиты кабин облицовочных деталей и платформ грузовых автомобилей.
Эмаль ГФ-230 ГОСТ 64-77 Окрашивание изделий из древесины и металла эксплуатируемых внутри помещений.
Эмаль МС-17 ТК 6-10-1012-78 Окрашивание автомобильных двигателей (светло-серая эмаль), песочная – для окрашивания деталей из обивочного картона; черная – для окрашивания узлов шасси и других деталей автомобиля
Эмаль ФА -5104 черная ТУ 6-10-1318-72 Окрашивание радиаторов и топливных баков
Эмаль ХВ – 110 ГОСТ 18374-79 Окрашивание металлических и деревянных поверхностей изделий и оборудования эксплуатируемых в условиях различных климатических районов
Эмаль КО- 828 ТУ 6-10-930-74 Фосфатированные* и нефосфатированные детали легковых автомобилей из мягких сталей.
Эмаль МЛ – 12 ГОСТ 9754-76 Окрашивание кузовов, оперения капотов легковых автомобилей и автобусов. Пригодна для использования в условиях севера.
Эмаль МА-1110 ГОСТ 20481-80 Окрашивание предварительно подготовленной фосфатированной, загрунтованной металлической поверхности кузова и других деталей автомобиля.
Эмаль МЧ-123 черная ТУ 6-10-979-71 Окрашивание рам, колес, радиаторов и мелких деталей автомобилей методом окунания, облива, распыления.
Эмаль МЧ-145 ТУ 6-10-978-75 Окрашивание деревянных и металлических платформ грузовых автомобилей.
Лак НЦ-134 ТУ 6-10-1291-77 Лакирование металлических и деревянных поверхностей, наносят пневматическим распылением.
Эмаль НЦ-1125 ГОСТ 7930-73 Окрашивание кабин, оперения, капотов грузовых автомобилей.
Эмали ГЦ-11 и НЦ-11А ГОСТ 9198-83 Окрашивание предварительно загрунтованных или загрунтованных и зашпатлеванных поверхностей изделий, эксплуатируемых в атмосферных условиях и внутри помещений.
Эмаль НЦ-5123 ГОСТ 7462-73 Окрашивание необработанных литых поверхностей, соприкасающихся с маслом деталей двигателей автомобилей, тракторов и сельскохозяйственных машин.
Лак ПЭ-154 ТУ6-10-1487-75 Окрашивание в качестве грунта под полиамидную эмаль пружин автомобиля.
ГФ-083 ОСТ 6-10-425-78 Грунтование кузовов автомобилей.
ФЛ-03Ж ГОСТ 9109-81 Для защиты деталей грузовых автомобилей.
В-МЛ-0143 Водоразбавляемая ГОСТ 24595-81 Грунтование поверхностей черных металлов
ГФ-089 черная Окрашивание карданных валов и других деталей автомобилей.

 

*Фосфатирование – процесс химической обработки стальных изделий с целью получения на их поверхности слоя не растворимых в воде фосфорно-кислых соединений.

 

Композиционные материалы.

Композиционные материалы обладают комплексом свойств, отличающихся от традиционных конструкционных материалов, что и предопределило их успешное применение для совершенствования современных и разработки принципиально новых конструкций.

 

Композиционные материалы представляют собой неоднородные системы, состоящие из двух или более фаз – компонентов, причем каждый из компонентов сохраняет свои свойства.

 

Для композиционных материалов характерна следующая совокупность признаков:

· состав, форма и распределение компонентов материала определены заранее;

· материалы состоят из двух компонентов и более различного химического состава, разделенных в материале границей;

· свойства материала определяются каждым из его компонентов;

· материал обладает свойствами, отличными от свойств компонентов, взятых в отдельности;

· макроструктура материала однородна при неоднородности микроструктуры;

· материал не встречается в природе.

Компонент, который обладает непрерывностью по всему объему, является матрицей.

Компонент, разделенный в объеме композиции, является армирующим (упрочняющим). В большинстве случаев понятие армирующий компонент заменяется термином «наполнитель», поскольку наполнитель в матрице помимо изменения прочности оказывает влияние и на другие характеристики композиции.

Материалы матрицы и армирующего компонента должны быть взаимно нейтральными, т.е. не образовывать твердых растворов или химических соединений, коэффициенты линейного и объемного расширения этих материалов должны быть близкими.

В качестве матричного материала могут быть использованы металлы и их сплавы, керамика, углеводороды, а также полимеры как органические так и не органические и другие материалы.

Армирующие компоненты должны обладать высокой прочностью и твердостью, а также высоким модулем упругости.

 

 

Рис.71. Классификация композиционных материалов.

 

По геометрии наполнителя композиционные материалы разделяют на три группы:

· с нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;

· с одномерными наполнителями, один из размеров которых значительно превосходит два других;

· с двухмерными наполнителями, размеры которых значительно превосходят третий.

По схеме расположения наполнителей выделяют три группы композиционных материалов:

· с одноосным, (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;

· с двухосным (плоскостным) расположением армирующего наполнителя в виде волокон, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;

· с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

По природе компонентов композиционные материалы разделяются на четыре группы:

· композиционные материалы, содержащие компонент из металлов или сплавов;

· композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;

· композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;

· композиционные материалы, содержащие компонент из органических соединений (эпоксидные, полиэфирные, фенольные и другие смолы).

 

Композиционные материалы с алюминиевой матрицей (нуль-мерный наполнитель).

Широкое применение нашли композиционные материалы на основе алюминия, упрочненные частицами технической окиси алюминия (Al2O3). Их получают методами порошковой металлургии прессованием алюминиевой пудры с последующим спеканием (САП - спеченный алюминиевый порошок).

Преимущества САП отчетливо проявляются при температурах выше 300º С, когда алюминиевые сплавы разупрочняются. Так при температуре 500º С предел прочности сплавов САП составляет 80-120 МПа, тогда как у сплавов Д19, Д20, АК-4 не превышает 5 МПа. Дисперсно-упрочненные сплавы сохраняют эффект упрочнения до 0,8 Тпл.

Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Детали из САП работают при 300-500º С и чаще это лопатки компрессоров, лопатки вентиляторов и турбин, поршневые штоки.

 

Композиционные материалы с никелевой матрицей.

Упрочняющим компонентом в композиционных материалах с никелевой матрицей являются частицы диоксида тория (ThO2) или диоксида гафния (HfO2). Эти материалы обозначаются ВДУ-1 и ВДУ-2 соответственно. В сплаве ВДУ-3 матрицей служит никелево-хромовый (нихром) твердый раствор (20 % хрома, 80 % никеля), а упрочнителем – диоксид гафния. Так же в качестве матрицы применяется сплав кобальта с цирконием (2 % циркония).

Дисперсно-упрочненные сплавы ВДУ-1, ВДУ-2 и ВДУ-3 целесообразно применять при рабочих температурах 1100-1200º С.

Основное применение композитов с никелевой матрицей – авиационная и космическая техника. Сплавы ВДУ-2, ВДУ-3 применяют в авиационном двигателестроении, из них изготавливают сопловые лопатки, стабилизаторы пламени, камеры сгорания, а также трубопроводы и сосуды, работающие при высоких температурах в агрессивных средах.

 

В авиастроении находят применение композиционные материалы на основе магния. Они обладают низкой плотностью, высокой длительной прочностью и высоким сопротивлением ползучести. Детали изготовленные из композитов на основе магния обладают малой массой и повышенной прочностью.

 

Композиционные материалы с одномерными наполнителями.

В композиционных материалах этого типа упрочняющими (армирующими) являются одномерные элементы в форме нитевидных кристаллов, волокон (проволока, жгут, лента и т.п.).

Армирующие волокна воспринимают основные напряжения, возникающие в процессе эксплуатации, и обеспечивают прочность и жесткость композита в направлении ориентации волокон. При изготовлении композиционных материалов применяют высокопрочные волокна из углерода, бора, стекла, металлической проволоки, нитевидных кристаллов оксидов, нитридов и других химических соединений.

Матрица защищает упрочняющие волокна от повреждений¸ служит средой, передающей нагрузку на волокно, и перераспределяет напряжения в случае разрыва отдельных волокон. В зависимости от материала матрицы композиционные материалы делятся на пластики (полимерная матрица), металлокомпозиты (металлическая матрица), композиты с матрицей из углеводорода и с керамической матрицей.

На свойства волокнистой композиции помимо высокой прочности армирующих волокон и жесткости пластичной матрицы оказывает влияние прочность связи на границе матрица-волокно.

 

Армирующие материалы.

Проволоки – наиболее экономичный и доступный армирующий материал. Для композитов, работающих при низких и умеренных температурах, используют стальные и бериллиевые проволоки, а для эксплуатируемых при умеренных и высоких температурах - вольфрамовые и молибденовые. Стальные проволоки чаще изготавливают из высокопрочной коррозионно-стойкой стали (Х18Н9, 30Х13, 13Х14Н3ФА, 20Х15Н5АМ3 и др.).

В состав проволоки изготовленной из вольфрама и молибдена для обеспечения требуемого уровня прочностных свойств вводят присадки, в качестве которых используют оксиды тория (ThO2), кремния (SiO2), лантана (La2O3) и др.

 

Углеродные волокна. Углеродные волокна получают из полиакрилнитрильного (ПАН) гидроцеллюлозного волокна или из волокон на основе нефтяных смол или пеков. Для них характерны высокие значения механических характеристик, высокая теплостойкость (свыше 2000º С в неокислительной среде), низкие коэффициенты трения и температурного расширения, высокая стойкость к химическим реагентам.

 

Борные волокна. Борные волокна получают осаждением бора из газовой фазы (BCl2 + H2) при 1100-1200º С на предварительно нагретую и очищенную вольфрамовую проволоку диаметром 12 мкм. В результате осаждения образуется сердцевина из боридов вольфрама (WB, W2B5, WB4) диаметром 15-17 мкм, вокруг которой располагается слой поликристаллического бора.

Эти волокна обладают по сравнению с другими армирующими компонентами большим модулем сдвига G, низкой плотностью (2600 кг/м3), достаточно высокой прочностью ( В = 3500 МПа) и температурой плавления 2300º С. Бор является полупроводником, поэтому композиты с таким волокном имеют пониженные тепло- и электропроводность. Борные волокна выпускаются промышленностью в виде моноволокон в катушках, а также в виде полуфабрикатов – лент полотняного плетения шириной от 5 до 50 см. Волокна бора применяют в производстве композитов как с металлической (алюминиевой) матрицей так и с полимерной матрицей.

 

Стеклянные волокна. Стеклянные волокна получают путем пропускания расплавленного стекла при 1200-1400º С через фильеры диаметром 0,8 – 3 мм и дальнейшим быстрым вытягиванием до диаметра несколько микрометров. Непрерывные волокна диаметром 3 -100 мкм, соединяясь в пряди, наматываются на вращающиеся с большой скоростью барабаны и имеют длину до 20 км. Поверхность стеклянных волокон покрывают замасливателем (эмульсия крахмала или минерального масла) для предотвращения истирания волокон при транспортировке и технологических операциях.

 

Так же в качестве армирующего материала применяется бериллиевая проволока, волокна карбида кремния, нитевидные кристаллы карбидов и нитридов кремния, оксида и нитридов алюминия и других тугоплавких соединений.

 

Композиционные материалы на металлической основе.

Композиционные материалы с алюминиевой матрицей.

Технический алюминий и его сплавы (АМц, АМr6, АД1, Д20, В95, САП и др.) используют в качестве матриц композиционных материалов. Армирование матриц выполняют стальной высококачественной проволокой из сталей 08Х18Н9Т, 1Х15Н4АМ3 и др., бериллиевой проволокой, волокнами бора, карбида кремния, углерода.

Алюминиевая матрица, армированная стальной проволокой (25-40 %), по прочностным свойствам превосходит высокопрочные алюминиевые сплавы и приближается к уровню аналогичных свойств титановых сплавов.

Композиция Al – волокно бора отличается высокой прочностью и жесткостью и способна работать при 400-500ºС, поскольку бор мало разупрочняется с повышением температуры.

Композиционные материалы на основе алюминия армированные углеродными волокнами, уступают по удельной прочности материалам, армированным борным волокном, хотя они дешевле и легче последних.

Помимо композитов с алюминиевой матрицей широко используются композиционные материалы на никелевой (ВКН-1), титановой и магниевой матрице.

 

Композиционные материалы на неметаллической основе.

В качестве матрицы в композиционных материалах на неметаллической основе используют отверженные эпоксидные, полиэфирные, фенольные, полиамидные и другие смолы. Наиболее распространены композиции, армированные стеклянными, органическими, борными и другими видами волокон.

К достоинствам композитов с полимерной матрицей следует отнести высокие удельные прочностные и упругие характеристики, стойкость к воздействию агрессивных сред, хорошие антифрикционные и фрикционные свойства наряду с высокими теплозащитными и амортизационными свойствами, а также достаточную простоту изготовления. Однако им присущ ряд недостатков, определяемых свойствами полимерной матрицы. Прежде всего это низкие прочность и жесткость при сжатии и сдвиге, снижение прочности при повышении температуры до 100-200º С, гигроскопичность и склонность к старению, т.е. изменение физико-механических свойств под воздействием климатических факторов.

 

Стеклопластики содержат в качестве наполнителя стеклянные волокна. Они нашли достаточно широкое применение благодаря высокой прочности, в том числе при знакопеременных нагрузках, коррозионной стойкости.

В ориентированных однонаправленных стекловолокнитах упрочняющие непрерывные волокна расположены в одном направлении – направлении действия нагрузки. Однонаправленные стекловолокниты отличаются анизотропией свойств. Наибольшую прочность и жесткость такие композиции имеют вдоль волокон.

Неориентированные стекловолокниты содержат хаотично расположенные в плоскости дискретные, короткие волокна. Для таких стеклопластиков характерна изотропия свойств. В тоже время прочность и жесткость неориентированных стеклопластиков меньше прочности и жесткости ориентированных стеклопластиков.

Плотность стеклопластиков составляет 1500-2000 кг/м3. В результате их удельные характеристики прочности сопоставимы с соответствующими характеристиками сталей. Однонаправленные стекловолокниты применяют для изготовления труб и различных профилей, в которых в условиях эксплуатации нагрузки направлены по длине детали. Неориентированные пластики применяют в производстве корпусов лодок, автомобилей, катеров, мебели, покрытий полов, облицовки бытовых и железобетонных конструкций, силовых деталей электрооборудования.

 

Углепластики (карбоволокниты). Это композиционные материалы на основе полиамида эпоксидной, эпокситрифенольной и других смол различного состава с упрочнителями из углеродных волокон.

По удельной прочности и жесткости углепластики существенно превосходят стеклопластики, сталь, алюминий и титановые сплавы.

Как конструкционный материал углепластики получили распространение в авиации и космонавтике. В космической технике из углепластиков изготавливают панели солнечных батарей, баллоны высокого давления, теплозащитные покрытия. Как химически стойкий материал, углепластики применяют в производстве насосов для перекачки коррозионноактивных сред.

 

Бороволокниты содержат в качестве армирующего наполнителя борные волокна. Большое применение боропластики нашли в авиационной и космической технике. Их высокая прочность и жесткость при сжатии используются в конструкциях деталей летательных аппаратов: балок, стрингеров, стоек шасси.

Органоволокниты – композиционные материалы, состоящие из полимерной матрицы и наполнителей – синтетических волокон - капрона, лавсана и др. Органоволокниты используют в элементах несущих и вспомогательных конструкций современных самолетов и вертолетов.

 

 

Клеи.

Клеями называют жидкие и пастообразные многокомпонентные системы, основой (связующим) которых являются высокомолекулярные вещества, обладающие высокой адгезией к твердым поверхностям.

Клеи предназначены для создания из различных материалов неразъемных соединений, которые в общем, виде состоят из двух склеиваемых материалов (субстраты) и клеевого слоя (адгезива) между ними.

Для качественного склеивания клей должен отвечать следующим требованиям:

· создавать клеевую пленку, обеспечивающую прочное соединение склеиваемых поверхностей;

· клеевая пленка должна быть атмосферостойкой и стойкой к действию других факторов, проявляющихся в условиях работы;

· клей не должен вызывать коррозии металла и разрушения других склеиваемых материалов.

Клеевые соединения имеют ряд преимуществ по сравнению с другими видами соединений (заклепочные, сварные, болтовые):

· возможность соединять различные материалы;

· атмосферостойкость;

· сопротивление коррозии;

· более равномерное распределение напряжений в склеиваемых элементах из-за отсутствия отверстий под болты и заклепки.

· относительная простота технологии склеивания;

· при необходимости обеспечение хорошей герметичности конструкций.

К недостаткам многих клеев можно отнести:

· низкая теплостойкость;

· невысокая прочность клеевых соединений;

· необходимость во многих случаях осуществлять нагревание при склеивании.

Прочность клеевого соединения зависит от величины силы прилипания клея к склеиваемой поверхности (адгезии) и прочности самой клеевой пленки (когезии).

Адгезия определяется величиной химических (ковалентных, электровалентных, координационных, водородных связей) и вандер-вальсовых (межмолекулярных) сил притяжения между частицами клея и склеиваемого материала. Склеивание клея с металлом в какой-то мере и механическое; клей в жидком состоянии, заполняя мельчайшие впадины и поры, имеющиеся на металлической поверхности, как бы зацепляется за них. Поэтому поверхность, на которую наносится клей должна быть шероховатая.

Адгезия клеевой пленки зависит также от величины усадки при ее формировании и разности коэффициентов линейного расширения пленки и материалов склеенных поверхностей.

Когезия клеевой пленки зависит от качества клея, соблюдения условий для ее образования (температура, время, давление) и толщины пленки.

С увеличением толщины клеевой пленки ее когезия уменьшается вследствие уменьшения воздействия силового поля склеиваемых поверхностей.

В зависимости от природы связующего различают клеи органического происхождения (животного и растительного) и синтетического.

К клеям органического происхождения относится казеиновый клей, столярный и другие, их применение в настоящее время ограничено. Применение синтетических клеев с каждым годом расширяется, что обусловлено их универсальностью и высоким качеством.



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 299; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.192.3 (0.156 с.)