Частные виды поверхностей вращения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Частные виды поверхностей вращения



Поверхности вращения нашли самое широкое применение в машиностроении. Это объясняется наибольшей простотой обработки их на станках, даже по сравнению с поверхностями параллельного переноса или винтовыми. Особенно распространены поверхности, образованные вращением прямой линии или окружности (части окружности).

Линейчатые поверхности вращения

(поверхности, образованные вращением прямой)

Возможны три случая расположения прямой образующей а относительно оси вращения i — образующая параллельна оси вращения, пересекает ось или скрещивается с нею. Соответственно имеются три вида линейчатых поверхностей вращения (рис 131):

— цилиндр вращения;

— конус вращения;

— однополостный гиперболоид вращения.

Рис. 131

Цилиндр вращения образуется вращением прямолинейной образующей а при условии, что а || i, где i — ось вращения (рис. 131à).

Конус вращения образуется вращением прямолинейной образующей а при условии, что а I i = S,

где i — ось вращения,

S — вершина конуса (рис. 131б).

Однополостный гиперболоид вращения образуется вращением прямолинейной образующей а вокруг оси вращения i при условии, что a i (рис. 131в).

Однополостный гиперболоид вращения также может быть образован вращением гиперболы вокруг своей мнимой оси.

Однополостный гиперболоид вращения имеет два семейства образующих — а и а1.

Цилиндр, конус и однополостный гиперболоид вращения — поверхности второго порядка.

 

Поверхности, образованные вращением окружности

В зависимости от взаимного расположения окружности и оси вращения можно получить различные поверхности (рис. 132).

Рис. 132

Тор (рис. 132а). Образуется вращением окружности а вокруг оси i, принадлежащей плоскости этой окружности а, но не проходящей через ее центр О. Это поверхность четвертого порядка.

Сфера (рис. 132б) — частный случай тора, когда центр О принадлежит оси вращения. Поверхность второго порядка.

Рис. 133

Глобоид (рис. 132в). Образующая — дуга окружности, обращенная выпуклостью к оси.

Ортогональные проекции тора, сферы, глобоида и построение проекций точки, принадлежащей названным поверхностям, показаны на рисунках 133, 134 и 135.

Рис. 134 Рис. 135  

ПОВЕРХНОСТИ ВИНТОВЫЕ

Винтовая поверхность получается винтовым перемещением образующей. Как известно, винтовое перемещение характеризуется вращением вокруг оси и одновременно поступательным движением, параллельным этой оси.

В зависимости от формы образующей, винтовые поверхности бывают линейчатые и нелинейчатые.

Винтовые поверхности широко применяются в машиностроении (резьба крепежных изделий, ходовых винтов, шнеков и др.).

Определитель винтовой поверхности:

F(a, m)[ A ],

где a — образующая (кривая или прямая);

m — направляющая — винтовая линия;

[ A ] — указания о характере винтового перемещения образующей.

Линейчатые винтовые поверхности называют ГЕЛИКОИДАМИ.

Если образующая пересекает ось, геликоид называют закрытым.

Если она скрещивается с осью, геликоид — открытый.

В зависимости от угла наклона образующей к оси, геликоиды различают

— прямые, когда угол равен 90о;

— косые, когда угол произвольный, отличный от 0о и 90о.

На рис. 136 показан закрытый прямой геликоид. Закрытый косой геликоид изображен на рис. 137.

Закрытый прямой геликоид иногда называют винтовым коноидом.

Почему? Для ответа следует сравнить рис. 137 и рис. 122.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 447; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.199.162 (0.006 с.)