Характеристические колебания 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристические колебания



Характеристические колебания

Многоатомные молекулы имеют 3 n –6(5) нормальных колебаний, и в каждом таком колебании участвуют не пары атомов при одной связи, а в той или иной степени все n атомов молекулы. Однако было экспериментально установлено, что для колебаний некоторых функциональных групп вклад «посторонних» атомов и связей достаточно мал, поэтому вне зависимости от окружения эти функциональные группы поглощают в ограниченном интервале частот. Этот факт позволил путём сравнения многочисленных спектров соотнести наличие в молекуле характерных фрагментов с наблюдаемыми полосами поглощения. Такие полосы получили название групповых, или характеристических. По ним можно быстро и однозначно подтвердить присутствие или отсутствие в молекуле соответствующих фрагментов[13].

Возникновение характеристических колебаний может происходить по двум причинам[14]:

1. Если характеристическое колебание относится к лёгкому атому, связанному с тяжёлым, то практически всё движение сосредоточено именно на нём, и влияние остальной части молекулы на него весьма слабое.

2. Колебания, относящиеся к атомам очень близкой массы (например, C=O, C≡N), слабо взаимодействуют с колебаниями остальных частей молекулы.

Существуют также менее определённые характеристические колебания, которые наблюдаются в сравнительно более широком интервале частот. Однако их положение в спектре можно объяснить массой атомов, резонансом или электронными эффектами в молекуле[14].

Поглощение излучения

Обычно в эксперименте прибор испускает одновременно все длины волн инфракрасного излучения, включая ближнюю ИК-область (14 000 — 4000 см−1), среднюю ИК-область (4000 — 400 см−1) и дальнюю ИК-область (400 — 10 см−1). Поглощение излучения веществом количественно описывается законом Бугера — Ламберта — Бера, а спектр получается при построении зависимости пропускания(T, англ. transmittance, %) или оптической плотности (D, англ. optical density) от длины волны (частоты, волнового числа)[15].

Для того, чтобы поглощение излучения произошло, необходимо выполнение двух условий. Во-первых, поглощаются лишь волны такой частоты, которая совпадает с частотой того или иного колебания молекулы. Во-вторых, колебание должно вызывать изменение дипольного момента молекулы. По этой причине молекулы, не имеющие дипольного момента (например, H2, N2, O2, а также соли без ковалентных связей и металлы), не поглощают инфракрасное излучение. Интенсивность полос в ИК-спектре пропорциональна квадрату изменения дипольного момента[15][16].

 

Дисперсионные ИК-спектрометры

Рис. 1 Оптическая схема двулучевого дисперсионного ИК-спектрометра: 1 — источник, 2 — образец, 3 — луч, проходящий через образец, 3' — луч сравнения, 4 — зеркало с секторами, 5 — щели, 6 — решётка, 7 — детектор

Типичный дисперсионный ИК-спектрометр функционирует следующим образом. Излучение от полихроматического источника проходит через кювету с образцом, а затем попадает на монохроматор, в качестве которого выступает призма либо дифракционная решётка. Далее инфракрасное излучение, разложенное в спектр, проходит через узкую щель, позволяющую выбрать необходимый спектральный диапазон и направить его на детектор, где происходит определение его интенсивности. Проход по всему спектральному диапазону достигается за счёт поворота призмы или дифракционной решётки: при этом в щель поочерёдно попадает излучение с разными длинами волн, что позволяет записать спектр[1].

Обычно дисперсионный прибор имеет двухлучевую оптическую схему. В нём регистрируется интенсивность не только пучка, проходящего через образец, но и пучка сравнения, который проходит через пустую кювету или кювету, заполненную чистым растворителем. Далее оба пучка поочерёдно попадают на монохроматор и детектор, где их интенсивности сравниваются. Конструкционно это достигается при помощи круглого зеркала, в котором часть секторов зеркальная, а часть пустая. Такое строение зеркала позволяет либо пропускать на детектор луч от образца, либо отражать на детектор луч сравнения, а за счёт вращения зеркала эти фазы быстро чередуются. Частное от деления интенсивности пучка от образца на интенсивность пучка сравнения даёт искомую величину пропускания T (англ. transmittance, %)[1].

 

В дисперсионных ИК-спектрометрах роль монохроматора может выполнять призма либо — в более новых моделях приборов — дифракционная решётка. Обычно в оптической схеме монохроматор располагается после кюветы с анализируемым веществом, то есть в спектр разлагается излучение, взаимодействовавшее с образцом. При этом последовательно для каждой длины волны излучения регистрируется интенсивность излучения, что и даёт спектр поглощения. На пути излучения установлена щель регулируемой ширины, позволяющая выделить для работы определённый спектральный интервал (обычно от 20 до 0,5 см−1)[17].

Рис. 2 Схема монохроматора

Монохроматор состоит из следующих основных частей и узлов: входная спектральная щель, коллиматорный объектив, диспергирующий элемент (призма или дифракционная решётка), фокусирующий объектив и выходная спектральная щель, которая выделяет излучение, принадлежащее узкому интервалу длин волн. Возможность сканирования спектра (выбора нужного спектрального диапазона) обеспечивается путём поворота диспергирующего элемента. Для обеспечения точности поворот осуществляется с помощью специального передаточного механизма, управление последним в различных моделях может осуществляться вручную (последовательно перебирая необходимые длины волн) или автоматически (с помощью готового или собственного программного обеспечения).

Рис. 3 Дисперсия света в призме

Рис. 4 Монохроматор на базе дифракционной решётки

Рис. 5 Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m=0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m=±1) максимуме можно наблюдать разложение света в спектр. Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Также существуют двойные монохроматоры, представляющие собой последовательно сочленённые монохроматоры, в которых излучение из выходной щели первого монохроматора направляется во входную щель второго

 

Фурье-ИК-спектрометры

Рис 6 Оптическая схема Фурье-ИК-спектрометра

Общее устройство

Основным элементом инфракрасного спектрометра с преобразованием Фурье является интерферометр Майкельсона, который работает следующим образом. Луч когерентного света падает на светоделитель, в результате чего получаются два луча примерно одинаковой интенсивности. Далее каждый из этих лучей отражается от своего зеркала и возвращается на светоделитель, где лучи объединяются, создают интерференцию и попадают на детектор. Одно из зеркал в интерферометре является подвижным: его положение постоянно изменяется, за счёт чего возникает меняющаяся разность хода. В зависимости от величины разности хода лучи соединяются в фазе или противофазе, что приводит к положительной или отрицательной интерференции[2].

Рис 7 Интерференция света

Рис 8 Современный интерферометр Майкельсона

 

Рис 9 Блок зеркал інтерферометра

 

При прохождении через интерферометр монохроматического излучения сигнал имеет вид синусоиды, частота которой пропорциональна волновому числу. Однако в ИК-спектрометрах используется полихроматическое инфракрасное излучение, поэтому синусоиды разных частот накладываются, образуя сложную картину, называемую интерферограммой. Интерферограмму можно превратить в инфракрасный спектр при помощи преобразования Фурье[2].

Рис. 10 Интерферограмма полихроматического излучения

 

Образец в этих приборах располагается между интерферометром и детектором, в отличие от дисперсионных спектрометров, где образец помещают между источником и монохроматором. Кроме того, Фурье-ИК-спектрометры обычно работают в однолучевом режиме: поочерёдно записываются два спектра (с образцом и без него), а их разность и даёт спектр поглощения образца[2].

Главным компонентом Фурье-ИК-спектрометров является интерферометр Майкельсона, известный с конца 19-го века. Его ключевыми элементами являются три зеркала. Светоделительное зеркало (пластина) делит пучок излучения на две части, одна из которых отражается от неподвижного зеркала, а вторая — от подвижного (сканера). Оба отражённых пучка затем снова попадают на светоделительное зеркало, где объединяются и направляются на детектор (фотоприёмник). Подвижное зеркало призвано создавать разницу оптического пути (разность хода) для двух пучков света. При разности хода в (n +½)×λ проходящие пучки взаимно уничтожаются, а отражённые, напротив, усиливаются. В результате получается интерферограмма — график зависимости интенсивности зарегистрированного излучения от разности хода пучков. Для монохроматического света она имеет форму косинусоиды. Для используемого в ИК-спектроскопии полихроматического света она приобретает более сложную форму и содержит всю спектральную информацию о падающем на детектор пучке. Далее интерферограмма пересчитывается в инфракрасный спектр путём преобразования Фурье[18][19].

Преимущество таких приборов заключается в следующем:[20]

· одновременно регистрируются все длины волн;

· на детектор попадает более интенсивный поток света за счёт отсутствия щелей;

· в качестве внутреннего эталона длины волны используется гелий-неоновый лазер;

· возможна запись спектров в режиме накопления.

Как следствие, значительно сокращается время записи спектра: спектрометры с преобразованием Фурье дают возможность записать до 50 спектров за секунду, в то время как дисперсионный прибор требует около 20 минут для записи одного спектра. Также улучшается качество спектров и чувствительность анализа (на 2-3 порядка) за счёт использования режима накопления[K 3]. Фурье-ИК-спектрометры обычно однолучевые, что делает невозможным запись спектра с образцом сравнения. По этой причине также не удаётся компенсировать «атмосферные» помехи (наличие углекислого газа и воды). Обычно этот недостаток устраняется путём записи двух последовательных спектров с вычитанием спектра образца сравнения из спектра анализируемого образца, однако в последнее время также приобретают популярность двухлучевые приборы[18].

Рис 11 Фурье-спектрометр представляет собой интерферометр Майкельсона, в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ. 1 — Источник белого света или исследуемый источник; 2 — Линза коллиматора; 3 — Кювета с исследуемым веществом; 4 — Опорный (эталонный) лазер; 5 — Вспомогательные зеркала опорного пучка от лазера; 6 — Фотоприёмник опорного пучка; 7 — Неподвижное зеркало; 8 — Подвижное зеркало; 9 — Механический привод подвижного зеркала; 10 — Объектив фотоприёмника; 11 — Фотоприёмник; 12 — Управляющий и обрабатывающий интерферограмму компьютер; 13 — Светоделительная пластина.

Источник излучения

Глоба́р — источник инфракрасного излучения. Представляет собой стержень из карбида кремния диаметром 5 мм и длиной порядка 40 мм, нагреваемый пропускаемым через него электрическим током до температуры порядка 1200—1400 °C. Рабочий диапазон излучения глобара 0.8—25 мкм. Используется в качестве источника излучения непрерывного спектра в спектроскопии.

 

Оптика

Оптические элементы инфракрасного спектрометра (кюветы, линзы, а для дисперсионного прибора — и призма) должны быть прозрачны для ИК-излучения. Поскольку стекло и кварц этому требованию не удовлетворяют, используются другие оптические материалы[3].

 

Оптические свойства некоторых материалов, применяемых в ИК-спектроскопии[3]  
Материал Область прозрачности (50 %) Примечания  
мкм см –1  
Кварцевое стекло 0,25—3,3 40 000—3000    
LiF 0,12—7,0 83 000—1400 Слегка растворим в воде  
CaF2 0,13—11,0 77 000—900 Относительно нерастворим в воде, устойчив к большинству кислот и щелочей  
NaCl KCl 0,25—16 0,30—20 40 000—625 33 333—500 Растворим в спирте и воде, дешев, применяются для ИК-окон  
AgCl AgBr 0,4—30 0,45—30 25 000—333 22 222—333 Нерастворимы в воде, растворимы в кислотах, чувствительны к УФ-излучению  
KBr 0,23—25 43 500—400 Хорошо растворим в воде, этаноле и глицерине, немного — в эфире, гигроскопичен  
CsBr 0,24—40 41 666—250 Растворим в воде и кислотах, очень гигроскопичен  
ZnSe 0,5—20 20 000—500 Относительно нерастворим в воде, устойчив к кислотам и основаниям, подходит для НПВО  
Ge 2—18 500—555 Нерастворим в воде, растворим в горячей серной кислоте и аммиаке, пригоден для НПВО  
KRS-5 0,6—38 16 666—263 Слегка растворим в воде, растворим в щелочах, не гигроскопичен, токсичен, подходит для НПВО  

Детектор

Для регистрации инфракрасного излучения в спектрометрах используются методы, позволяющие быстро и с высокой точностью определять температуру. Приемники ИК излучения делятся на две группы: тепловые и фотоэлектронные. Первая группа включает термоэлементы (термопары), болометры (сопротивления с большим температурным коэффициентом), пневматические приемники, пироэлектрические приёмники. Пироэлектрические детекторы (на основе триглицинсульфата (NH2CH2COOH)3 H2SO4) используются в интерферометрах из-за их высокой чувствительности в широкой ИК области. В основе работы фотоэлектронных полупроводниковых приемников, к которым относятся фоторезисторы и фотодиоды, лежит явление внутреннего фотоэффекта. В ближнем ИК диапазоне наиболее распространены фотодиоды на основе германия и твёрдого раствора InGaAs. В среднем ИК диапазоне применяются охлаждаемые жидким азотом фотодиоды на основе твёрдого раствора HgCdTe (MCT Mercury-Cadmium-Tellurium). Полупроводниковые детекторы для работы в низкочастотной области требуют охлаждения до низких (азотных или гелиевых) температур. Ширина запрещённой зоны определяет длинноволновую границу чувствительности фотоэлектронных приёмников.

Раньше в приборах для этой цели использовали термоэлементы или ячейку Голея. Действие последней основано на расширении газа: камера, наполненная ксеноном и закрытая с одной стороны гибкой мембраной, нагревается падающим инфракрасным излучением. Газ при нагревании расширяется и деформирует мембрану, положение которой фиксируется с помощью светового указателя[4].

Ячейка Голея, ОАП (оптоакустический преобразователь) − приёмник излучения, используемый, в основном, в инфракрасной спектроскопии. Основой диапазон измерений: терагерцовое и ближнее ИК-излучение.

Рис 12 Схема ячейки Голея

Детектор с остоит из небольшого металлического цилиндра, закрытого затемнённой металлической пластиной с одной стороны и гибкой металлизированной диафрагмы с другой. Цилиндр заполнен ксеноном и запаян. Как только инфракрасное излучение падает на затемнённую металлическую пластину, газ нагревается, и его давление увеличивается. Это приводит к деформации диафрагмы, разделяющей две камеры. Свет от лампы, падающий на диафрагму, отражается от неё на фотодетектор. Движение диафрагмы изменяет величину отражённого потока.[1]

Преимущества

Основным преимуществом является то, что используемый диапазон длин волн достаточно широк. Отклик в основном линеен во всей рабочей области. Данный детектор также имеет достаточно малое время задержки ответа, порядка 10 мс. Среди недостатков можно отметить его сравнительно высокую стоимость и громоздкость установки (включающей помимо ОАПа блок питания к нему, набор фильтров и соединительных проводов).

 

Органические соединения

Рис 13 ИК-спектр этанола, записанный из плёнки вещества в режиме пропускания (T)

Колебательные спектры органических соединений обычно имеют сложную структуру и содержат большое число полос разной формы и интенсивности. Экспериментально установлено, что наличие тех или иных полос в определённой области спектра свидетельствует о наличии в молекуле соответствующих им функциональных групп.

Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства. Старшая функциональная группа соединения является критерием его отнесения к тому или иному классу органических соединений[1].

Рис 14 Бензил ацетат имеет эфирную функциональную группу (показано красным), ацетильную группу (зелёная) и бензильную группу (оранжевая).

 

Однако ни одна группа не является в полной мере изолированной от колебаний остальной части молекулы. Это приводит к некоторым изменениям частоты и интенсивности полос, зависящим от химического окружения функциональной группы[21].

Анализ ИК-спектров многих тысяч органических соединений позволил составить корреляционные таблицы, которые связывают функциональные группы с частотой и интенсивностью колебаний. Однако обычно в спектрах органических соединений присутствуют также полосы поглощения, которые нельзя соотнести с конкретными колебаниями[21].

Колебания связей X–H, где X: C, O или N, можно приближённо описать, как колебания двухатомной молекулы. В этом случае приведённая масса μ всегда близка к 1, а значение силовой постоянной K примерно одинаково для всех подобных связей, поэтому колебания X–H проявляются приблизительно в одной области частот. Например, для связи C–H силовая постоянная равна около 490 Н/м, что даёт частоту в 3000 см−1. Для связей O–H и N–H значение частоты обычно немного выше из-за более высоких значений K [21].

Для связей X–X' приведённая масса гораздо выше, например, для связи C–O она составляет 6,86. Поскольку силовая постоянная примерно такая же, как для связи C–H (обе связи одинарные), то частота колебаний C–O должна быть в √6,86 раз ниже, чем 3000 см−1, т. е. 1150 см−1. Аналогичные соображения применимы для кратных связей. Например, силовая постоянная связи C=O примерно в два раза выше, чем для связи C–O, соответственно, оценочная частота её колебания составляет 1600 см−1 (реальное усреднённое значение равно 1700 см−1). Тройные связи прочнее двойных, и их колебания наблюдаются в диапазоне 2300—2100 см−1[21].

Силовые постоянные для деформационных колебаний ниже, чем для соответствующих валентных колебаний, поэтому они проявляются при более низких частотах. Например, колебания групп XH2попадают в область 1500 см−1, групп XYH — в область от 1500 до 1000 см−1, а групп XYZ (все атомы относительно тяжёлые) — в область ниже 1000 см−1[21].

Таким образом, спектр можно разделить на четыре области:

· 3600—2800 см−1 — область валентных колебаний X-H;

· 2800—1800 см−1 — область колебаний тройных связей либо других относительно редких групп;

· 1800—1500 см−1 — область колебаний двойных связей;

· ниже 1500 см−1 — область отпечатков пальцев[21].

Изотопное замещение приводит к тому, что частота колебания смещается, причём экспериментально наблюдаемый сдвиг обычно хорошо согласуется с расчётным. Теоретически, замена атома водорода на дейтерий должна привести к изменению частоты в √2 = 1,414 раза, но на практике это смещение зависит также от типа колебания, например, для валентного симметричного и маятникового колебаний коэффициент изменения составляет 1,379 раза, для валентного асимметричного — 1,349 раза, для плоскостного деформационного — 1,349 раза, для веерного — 1,323 раза, и для крутильного — 1,414 раза. Также отклонение от расчётных параметров наблюдается из-за небольшого укорочения длины связи при замещении более тяжёлым изотопом, например, для молекул H35Cl и D35Cl равновесные расстояния между центрами атомов равны 1,2837 и 1,2813 Å[K 4][22].

Подготовка образцов

Рис 16 Пресс для приготовления таблеток бромида калия

Регистрация спектров жидких веществ обычно осуществляется из тонких плёнок, расположенных между стёклами из материалов, пропускающих ИК-излучение. Для органических веществ обычно применяется бромид калия. Для водных растворов может применяться селенид цинка, который обладает широким спектральным окном пропускания, однако его высокий коэффициент преломления приводит к появлению полос интерференции, что затрудняет количественное определение. Заменой ему могут служить фторид кальция и фторид бария. Стёкла из галогенидов щелочных металлов быстро мутнеют во влажной атмосфере и легко царапаются, но могут быть легко отполированы заново[25].

Существует три приёма для записи спектров жидкостей: в ячейках с фиксированными или съёмными спейсерами (прокладками между стекол) либо из плёнки непосредственно между стёклами. Для количественных измерений предпочтительно использование фиксированных ячеек, где спейсером служит амальгама, которая обеспечивает постоянный оптический путь. В разборных ячейках эту функцию выполняет прокладка из металлической фольги или тефлона. Стёкла в таких ячейках можно разбирать для очистки или изменения длины оптического пути. Обычно после повторной сборки оптический путь немного изменяется, однако он может быть легко рассчитан вновь по полосам интерференции. Толщина зазора между стёклами пустой ячейки рассчитывается как (2 × расстояние между полосами)−1. Согласно третьему способу, каплю жидкости можно поместить на одно стекло и прижать её другим. При этом оптический путь регулируется прилагаемым усилием. Это удобно для количественных оценок, но неудобно для летучих веществ[25].

Если образец неустойчив или легко испаряются, для записи спектра можно использовать кюветы с водяным охлаждением. Выбор такой кюветы может быть существенным в случае прибора с большой мощностью инфракрасного излучения[26].

Также одним из приёмов для записи спектров жидких веществ является их растворение в подходящем растворителе. Обычно для этой цели не используют воду, поскольку она несовместима со многими оптическими материалами и сильно поглощает в ИК-области. Лучше всего использовать растворители, состоящие из симметричных молекул, так как они дают минимальное число полос в инфракрасном спектре. Особое значение в этом смысле имеют сероуглерод и четырёххлористый углерод[26].

Для получения спектров твёрдых веществ их нужно измельчить в мелкий порошок и диспергировать в матрице. В качестве матрицы обычно используется бромид калия: в количестве 200-300 мг он смешивается с образцом (1-2 мг), растирается (для получения качественных спектров желательно, чтобы размер частиц не превышал длины волны излучения), вакуумируется для удаления воды и прессуется ручным гидравлическим прессом (обычно мощностью 15 или 25 тонн) в небольшую таблетку диаметром 13 мм и толщиной 1 мм. Перед использованием бромид калия можно прогревать до 40 °С для того, чтобы на нём не конденсировалась вода, которая даже в минимальном количестве проявляется в спектре в виде полос при 3450 и 1640 см−1. Преимуществом такого приёма является то, что бромид калия не поглощает в области выше 400 см−1. Также растворимые вещества можно нанести на стекло в виде раствора, после чего удалить растворитель под инфракрасной лампой[25][27].

Альтернативным материалом матрицы служит вазелиновое масло (нуйол[en]). Образец в этом случае готовится растиранием в ступке с несколькими каплями такого масла. Получаемая смесь помещается в разборную кювету, после чего записывается спектр. Примесными сигналам от матрицы являются сигналы CH3- и CH2-групп. Наблюдать сигналы в области 3000 см−1 позволяет матрица из фторированных углеводородов (fluorolube)[28].

Если образец представляет собой тонкий однородный материал, спектр записывают в проходящем ИК-излучении, предварительно закрепив образец в специальном держателе. Он представляет собой пластинку с прямоугольным отверстием, к которому прижимается образец, накрываемый сверху магнитной пластинкой с отверстием в центре[26].

ИК-измерения для газообразных веществ требуют гораздо более длинных оптических путей, обычно 10 см при достаточно высокой концентрации. В случае следовых концентраций применяются системы с многократным отражением, обеспечивающие оптический путь порядка нескольких метров при небольших размерах прибора. В этом случае предел обнаружения составляет ниже 1 м. д.[25] Особенностью спектроскопии газообразных образцов является проявление вращательного движения молекул, а также уширение спектральных линий вследствие теплового движения и соударения частиц. С данным видом спектроскопии связан ряд других проблем, например, из-за очень большой длины оптического пути существенную роль начинает играть расходимость светового пучка, из-за чего между центральными и краевыми лучами пучка возникает дополнительная разность хода[29].

 

ИК-спектроскопия отражения

В традиционной инфракрасной спектроскопии исследуется спектр излучения, прошедшего через образец. Существуют также методы исследования инфракрасного излучения, отражённого от поверхности образца. Они основаны на изучении:

· нарушенного полного внутреннего отражения (НПВО);

· зеркального отражения;

· скользящего отражения;

· диффузного отражения[30].

Существенным преимуществом таких методов является то, что удаётся изучать образцы, непрозрачные для ИК-излучения, а также обходиться без процесса пробоподготовки и проводить анализ непосредственно в полевых условиях. Кроме того, такие анализы не являются разрушающими[30].

Спектроскопия НПВО

Рис 17 Оптический путь ИК-излучения в кристалле НПВО

Метод основан на отражении пучка на границе раздела двух фаз: фазы кристалла НПВО с относительно высоким показателем преломления и фазы исследуемого образца с более низким показателем преломления. Если пучок излучения падает на плоскость образца под углом падения больше критического, то наблюдается практически полное отражение пучка от поверхности образца. На самом деле излучение на небольшую глубину проникает в фазу образца, где частично поглощается. При последующих попаданиях того же пучка света на образец это явление повторяется, и в результате получается некое подобие спектра поглощения. Наблюдаемые частоты поглощённого излучения будут совпадать с частотами, получаемыми в ИК-спектроскопии пропускания[31].

Для проведения спектроскопии НПВО инфракрасные спектрометры оборудуются специальной приставкой. В ней анализируемое вещество помещается в непосредственный контакт с кристаллом и фиксируется при помощи прижимного устройства. Далее через кристалл под специально подобранным углом подаётся инфракрасное излучение, интенсивность которого фиксируется на выходе из кристалла. Обычно в дисперсионных приборах осуществляется примерно 25 отражений, а в спектрометрах с преобразованием Фурье — около шести[31].

Спектроскопия НПВО позволяет анализировать как обычные жидкие образцы, так и «сложные», например, водные растворы, пасты и гели. Поскольку кристалл НПВО легко извлекается из кюветы, нанесение и удаление образца не представляет особой трудности. Также анализу поддаются порошки и полимеры, которые прижимаются к кристаллу специальным устройством. Существуют специальные кюветы для анализа кожи, которые находят применение при изучении действия косметики и лекарств на кожу человека[31].

ИК-спектроскопия испускания

Несмотря на то, что большинство инфракрасных спектрометров предназначено для проведения экспериментов с поглощением ИК-излучения, разработаны также методы инфракрасной спектроскопии испускания, в которой регистрируются инфракрасные волны, излучаемые веществом. ИК-спектроскопия испускания демонстрирует большую чувствительность, нежели спектроскопия поглощения, поскольку она имеет нулевой уровень шума. Это означает, что детектором воспринимаются исключительно длины волн, приходящие от изучаемого образца, в то время как в спектроскопии поглощения источник света излучает волны в непрерывном диапазоне длин волн[37].

Для проведения таких экспериментов необходимы специальные условия. Изучаемый образец должен иметь температуру, отличную от температуры спектрометра, иначе будет отсутствовать поток излучения между образцом и детектором. Желательно, чтобы температура образца была выше, поскольку с повышением температуры сильно возрастает интенсивность ИК-излучения от образца. Необходимо также учитывать, что сам спектрометр или нагревательный элемент могут быть источниками мешающего фонового инфракрасного излучения[37]. Избежать обеих проблем позволяет, например, детектор из InSb, охлаждённый до температуры жидкого азота (77 К), и прочие детекторы, охлаждаемые жидким азотом или жидким гелием (4 К), излучением которых можно пренебречь[38].

Типичной областью применения ИК-спектроскопии испускания являются исследования атмосферы: ИК-излучение Земли, проходящее через слой атмосферы, детектируется спутником в направлении надира. При этом излучение Земли имеет спектр чёрного тела, в котором присутствуют полосы поглощения молекул атмосферы. Существуют также методы снятия ИК-спектров испускания жидкостей (например, тонких плёнок расплавов солей), поверхностей и твёрдых тел небольшой толщины (несколько мкм). Важной областью использования спектроскопии испускания является инфракрасная астрономия. Хотя большинство небесных тел дают ИК-спектры поглощения на фоне звёзд или пыли, некоторые объекты, например, кометы, имеют замечательные спектры испускания. В спектрах проявляются горячие испарённые молекулы и продукты их фотолиза. Так, среди обнаруженных данным методом частиц находятся H2O, CO, CO2, C2, CN, CH4, C2H2, C2H, CH3OH, HCN, OCS и СН. Также спектры испускания имеют некоторые планеты-гиганты. Стратосфера Юпитера показывает наличие этана, а в полярном сиянии Юпитера, Сатурна и Урана обнаружено излучение частицы H+3. Большинство этих спектров было записано криогенными спектрометрами, а некоторые из них сняты Инфракрасной космической лабораторией[39].

 

С газовой хроматографией

Благодаря своей информативности инфракрасная спектроскопия используется в комбинации с газовой хроматографией. В данном случае и разделение смеси веществ, и запись ИК-спектра проводятся в газообразной фазе. Вещества, выходящие из хроматографической колонки подаются в так называемую «световую трубку» — нагретый позолоченный канал, не позволяющий анализируемым веществам конденсироваться. Вдоль этой же трубки проходит инфракрасное излучение, интенсивность которого детектируется на выходе. Благодаря быстрой регистрации ИК-спектров с преобразованием Фурье становится возможной запись спектров для каждого компонента разделяемой смеси[40].

Необходимо учитывать, что спектры веществ в газовой фазе обычно отличаются от спектров конденсированных веществ. Для получения ИК-спектров соединений, твёрдых или жидких при комнатной температуре, используется техника вымораживания. Выходящие из колонки вещества попадают на пластинку, охлаждаемую жидким азотом, после чего происходит запись спектра прямо с пластинки[40].

Особый интерес представляет комбинация газовой хроматографии, инфракрасной спектроскопии и масс-спектрометрии. Поскольку в ходе ИК-анализа вещество не разрушается, его можно проанализировать и на масс-спектрометре. Такой анализ даёт весьма большой объём аналитической информации, необходимой для идентификации химических соединений[40].

Двумерная ИК-спектроскопия

Двумерная инфракрасная спектроскопия является относительно новым методом, позволяющим расширить возможности стандартной ИК-спектроскопии. Двумерный ИК-спектр получается при корреляционном анализе динамических флуктуаций сигналов, которые вызываются внешними возмущениями разной природы. Такие спектры находят основное применение при изучении взаимодействий между функциональными группами. Снятие двумерного спектра позволяет упростить перегруженные сигналами одномерные спектры, улучшить разрешение за счёт появления второго измерения и обнаружить корреляции между частями молекулы[42].

В основе двумерной ИК-спектроскопии не может лежать наблюдение обычных колебательных переходов в молекулах, поскольку они происходят весьма быстро (за время порядка пикосекунд), по сравнению, например, со спектроскопией ЯМР, где время релаксации составляет микросекунды, что позволяет записывать двумерные ЯМР-спектры на основе тех же переходов, что и одномерные. В двумерной же ИК-спектроскопии приходится проводить наблюдение других релаксационных процессов, которые индуцируются внешним воздействием. В итоге получается так называемый динамический ИК-спектр, в котором во времени варьируются интенсивности полос, их положение (волновые числа) и направление поглощений (явление дихроизма). В качестве источников внешнего воздействия могут выступать электрические, термические, магнитные, химические, акустические или механические факторы, причём каждый из этих факторов оказывает на систему собственное уникальное воздействие. В результате можно получать двумерные спектры, содержащие различные наборы информации[43].

Применение

Наряду с традиционным использованием в различных областях химии для установления строения и идентификации химических соединений, инфракрасная спектроскопия также нашла применение в других специальных областях.

Применение в медицине



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 677; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.242.165 (0.08 с.)