Взаимодействие клеток при иммунном ответе 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Взаимодействие клеток при иммунном ответе



ИММУНОПАТОЛОГИЯ

В организме человека постоянно происходят мутации. Их суммарное количество в расчёте на один клеточный цикл составляет примерно 1*106. Часть мутаций сопровождается синтезом новых белков, обладающих антигенными свойствами. Происходящие в связи с этим структурные и функциональные изменения могут привести к существенные расстройствам жизнедеятельности клеток, тканей, органов и организма в целом. Кроме того, организм постоянно подвергается атаке вирусов, бактерий, риккетсий, грибов, паразитов, способных вызвать различные болезни. В связи с этим в ходе эволюции сформировалась высокоэффективная система клеточных и неклеточных факторов распознавания собственных и чужих структур - система иммунобиологического надзора (ИБН).

СИСТЕМА ИММУНОБИОЛОГИЧЕСКОГО НАДЗОРА

Биологическое значение системы иммунобиологического надзора ИБН заключается в контроле (надзоре) за индивидуальным и однородным клеточно молекулярным составом организма.
Обнаружение носителя чужеродной генетической или антигенной информации (молекулы, вирусы, клетки или их фрагменты) сопровождается его инактивацией, деструкцией и, как правило, элиминацией. При этом клетки иммунной системы способны сохранять «память» о данном агенте.
Повторный контакт такого агента с клетками системы ИБН вызывает развитие эффективного ответа, который формируется при участии как специфических — иммунных механизмов защиты, так и неспецифических факторов резистентности организма (рис. 16–1).

 

 

Рис. 16–1. Структура системы иммунобиологического надзора организма.
NK — natural killers (естественные киллеры). А-клетки — антигенпредставляющие клетки.

 

К числу основных в системе представлений о механизмах надзора за индивидуальным и однородным антигенном составе организма относят понятия об Аг, иммунитете, иммунной системе и системе факторов неспецифической защиты организма.

АНТИГЕНЫ

Инициальным звеном процесса формирования иммунного ответа является распознавание чужеродного агента — антигена (Аг). Происхождение этого термина связано с периодом поиска агентов, веществ или «тел», обезвреживающих факторы, вызывающие болезнь, а конкретно речь шла о токсине дифтерийной палочки. Эти вещества назвали вначале «анти токсинами», а вскоре был введён более общий термин «анти тело». Фактор же, приводящий к образованию «анти тела» обозначили как «анти ген».

Антиген — вещество экзо- или эндогенного происхождения, вызывающее развитие иммунных реакций (гуморального и клеточного иммунных ответов, реакций гиперчувствительности замедленного типа и формирование иммунологической памяти).

Учитывая способность Аг вызывать толерантность, иммунный или аллергический ответ их называют ещё, соответственно, толерогенами, иммуногенами или аллергенами соответственно.
Различный результат взаимодействия Аг и организма (иммунитет, аллергия, толерантность) зависит от ряда факторов: от свойств самого Аг, условий его взаимодействия с иммунной системой, состояния реактивности организма и других (рис. 16–2).

Рис. 16–2. Потенциальные эффекты антигена в организме.

 

АНТИГЕННАЯ ДЕТЕРМИНАНТА

Образование АТ и сенсибилизацию лимфоцитов вызывает не вся молекула Аг, а только особая его часть — антигенная детерминанта, или эпитоп. У большинства белковых Аг такую детерминанту образует последовательность из 4–8 аминокислотных остатков, а у полисахаридных Аг — 3–6 гексозных остатков. Число же детерминант у одного Аг может быть различным. Так, у яичного альбумина их не менее 5, у дифтерийного токсина — минимум 80, у тиреоглобулина — более 40.

 

ВИДЫ АНТИГЕНОВ

В соответствии со структурой и происхождением Аг подразделяют на несколько видов.

  • В зависимости от структуры различают белковые и небелковые Аг.

Белки или сложные вещества (гликопротеины, нуклеопротеины, ЛП). Их молекулы могут иметь несколько различных антигенных детерминант;
Вещества, не содержащие белка, называют гаптенами. К ним относятся многие моно, олиго и полисахариды, липиды, гликолипиды, искусственные полимеры, неорганические вещества (соединения йода, брома, висмута), некоторые ЛС. Сами по себе гаптены неиммуногенны. Однако после их присоединения (как правило, ковалентного) к носителю молекуле белка или белковым лигандам клеточных мембран они приобретают способность вызывать иммунный ответ. Молекула гаптена обычно содержит лишь одну антигенную детерминанту.

  • В зависимости от происхождения различают экзогенные и эндогенные Аг.

Экзогенные Аг подразделяют на инфекционные и неинфекционные.
- Инфекционные и паразитарные Аг (вирусов, риккетсий, бактерий, грибов, одно и многоклеточных паразитов).
- Неинфекционные (чужеродные белки; белоксодержащие соединения; Аг и гаптены в составе пыли, пищевых продуктов, пыльцы растений, ряда ЛС).
Эндогенные Аг (аутоантигены) появляются при повреждении белков и содержащих белок молекул собственных клеток, неклеточных структур и жидкостей организма, при конъюгации с ними гаптенов, в результате мутаций, приводящих к синтезу аномальных белков, при сбоях иммунной системы. Другими словами, во всех случаях когда Аг распознаётся как чужеродный.

 

ИММУНОПАТОЛОГИЯ

ИММУНИТЕТ

В иммунологии термин «иммунитет» применяют в трёх значениях.

  • Для обозначения состояния невосприимчивости организма к воздействию носителя чужеродной генетической или антигенной информации (бактерии, вирусы, риккетсии, паразиты, грибы, клетки чужеродного трансплантата, опухолей и др.).
  • Для обозначения реакций системы ИБН против Аг.
  • Для обозначения физиологической формы иммуногенной реактивности организма, наблюдающейся при контакте клеток иммунной системы с генетически или антигенно чужеродной структурой. В результате эта структура подвергается деструкции и, как правило, элиминируется из организма.


ИММУННАЯ СИСТЕМА

Иммунная система — комплекс органов и тканей, содержащих иммунокомпетентные клетки и обеспечивающая антигенную индивидуальность и однородность организма путём обнаружения и, как правило, деструкции и элиминации из него чужеродного Аг. Иммунная система состоит из центральных и периферических органов.

  • К центральным (первичным) органам относят костный мозг и вилочковую железу. В них происходит антигеннезависимое деление и созревание лимфоцитов, которые впоследствии мигрируют в периферические органы иммунной системы.
  • К периферическим (вторичным) органам относят селезёнку, лимфатические узлы, миндалины, лимфоидные элементы ряда слизистых оболочек. В этих органах происходят как антигеннезависимая, так и антигензависимая пролиферация и дифференцировка лимфоцитов. Как правило, зрелые лимфоциты впервые контактируют с Аг именно в периферических лимфоидных органах.

Заселение периферических органов иммунной системы T и B-лимфоцитами, поступающими из центральных органов иммунной системы, происходит не хаотически. Каждая популяция лимфоцитов мигрирует из кровеносных сосудов в определённые лимфоидные органы и даже в различные их регионы. Так, B-лимфоциты преобладают в селезёнке (в её красной пульпе, а также по периферии белой) и пейеровой бляшке кишечника (в центрах фолликулов), а T-лимфоциты — в лимфатических узлах (в глубоких слоях их коркового вещества и в перифолликулярном пространстве).
В организме здорового человека в процессе лимфопоэза образуется более 109 разновидностей однородных клонов лимфоцитов. При этом каждый клон экспрессирует только один вид специфического антигенсвязывающего рецептора. Большинство лимфоцитов периферических органов иммунной системы не закрепляются в них навсегда. Они постоянно циркулируют с кровью и лимфой как между различными лимфоидными органами, так и во всех других органах и тканях организма. Такие лимфоциты получили название рециркулирующих.
Биологический смысл рециркуляции T и B-лимфоцитов:
- Во первых, осуществление постоянного надзора за антигенными структурами организма.
- Во вторых, реализация межклеточных взаимодействий (кооперация) лимфоцитов и мононуклеарных фагоцитов, что необходимо для развития и регуляции иммунных реакций.

ИММУНОКОМПЕТЕНТНЫЕ КЛЕТКИ

 

Рис. 16–3. Организация и функции системы иммунокомпетентных клеток.
СКК — стволовая кроветворная клетка, МБ —миелобласт, М —миелоцит, ЛСК — лимфопоэтическая клетка, ПТ — преT-лимфоцит, Тл — T-лимфоцит, Вл — B-лимфоцит, ПК — плазматическая клетка, Мф — макрофаг, Тлб — T-лимфоцит в состоянии бласттранcформации, Тл h — T-лимфоцит хелпер, Тл s — T-лимфоцит супрессор, Тл k — T-лимфоцит киллер, АРЗТ — аллергическая реакция замедленного типа, АРНТ — аллергическая реакция немедленного типа.

Т-лимфоциты развиваются в тимусе из клеток-предшественниц. В-лимфоциты дифференцируются в печени плода и костном мозге взрослого организма. NK-клетки образуются из предшественников лимфоидных клеток в костном мозге. Лимфоциты, как и другие лейкоциты, на своей поверхности экспрессируют большое количество различных молекул, по которым при помощи моноклональных АТ идентифицируют их принадлежность к конкретной клеточной популяции. Чаще всего с этой целью выявляют дифференцировочные антигены (CD), являющиеся специфичными клеточными маркёрами.

Идентификация клеточных маркёров при помощи АТ используется в проточной цитометрии для сортировки и подсчёта количества клеток в исследуемых популяциях.

B-ЛИМФОЦИТЫ

Эта субсистема образована различными клонами B-лимфоцитов. Название субсистемы отражает то обстоятельство, что лимфоциты, представляющие её, формируются у птиц в сумке (bursa) Фабрициуса (впервые B-лимфоциты были выявлены в лимфоидных органах птиц). У человека подобной бурсы нет, B-лимфоциты созревают в костном мозге, а также, возможно, в пейеровых бляшках, миндалинах, определённых зонах селезёнки и лимфоузлов. B-лимфоциты берут начало от стволовых кроветворных клеток костного мозга. B-лимфоциты обеспечивают реализацию эффекторного звена гуморального иммунного ответа.

В мембране B-лимфоцита присутствует рецептор Аг — мономер IgM. Из красного костного мозга B-лимфоциты мигрируют в тимус-независимые зоны лимфоидных органов. Продолжительность жизни большинства B-лимфоцитов не превышает десяти дней, если они не активируются Аг. Зрелые В-лимфоциты (плазматические клетки) вырабатывают АТ — Ig всех известных классов. CD19, CD20 и CD22 — основные маркёры, используемые для идентификации B-клеток.
В процессе формирования B-клеток выделяют антигеннезависимую и антигензависимую стадии.


АНТИГЕННЕЗАВИСИМАЯ СТАДИЯ
Антигеннезависимая стадия созревания B-лимфоцитов происходит под контролем локальных клеточных и гуморальных сигналов от микроокружения пре B-лимфоцитов и не определяется контактом с Аг. На этой стадии происходит формирование отдельных пулов генов, кодирующих синтез Ig, а также экспрессия этих генов. Однако, на цитолемме пре B-клеток ещё нет поверхностных рецепторов — Ig, компоненты последних находятся в цитоплазме.
Образование B-лимфоцитов из пре B-лимфоцитов сопровождается появлением на их поверхности первичных Ig, способных взаимодействовать с Аг. Только на этом этапе B-лимфоциты попадают в кровоток и заселяют периферические лимфоидные органы. Сформировавшиеся молодые B-клетки накапливаются в основном в селезёнке, а более зрелые -в лимфатических узлах.

АНТИГЕНЗАВИСИМАЯ СТАДИЯ
Антигензависимая стадия развития B-лимфоцитов начинается с момента контакта этих клеток с Аг (в том числе — аллергеном). В результате происходит активация B-лимфоцитов, протекающая в два этапа: пролиферации и дифференцировки.

  • Пролиферация B-лимфоцитов обеспечивает два важных процесса:

Увеличение числа клеток, дифференцирующихся в продуцирующие АТ (Ig) B-клетки (плазматические клетки). По мере созревания B-клеток и их превращения в плазматические клетки происходит интенсивное развитие белоксинтезирующего аппарата, комплекса Гольджи и исчезновение поверхностных первичных Ig. Вместо них продуцируются уже секретируемые (т.е. выделяемые в биологические жидкости — плазму крови, лимфу, СМЖ и др.) антигенспецифические АТ. Каждая плазматическая клетка способна секретировать большое количество Ig — несколько тысяч молекул в секунду. Процессы деления и специализации B-клетки осуществляются не только под влиянием Аг, но и при обязательном участии T-лимфоцитов хелперов, а также выделяемых ими и фагоцитами цитокинов — факторов роста и дифференцировки;
Образование В-лимфоцитов иммунологической памяти. Эти клоны B-клеток представляют собой долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об Аг. Клетки памяти активируются при повторной их стимуляции тем же самым Аг. В этом случае B-лимфоциты памяти (при обязательном участии T-êëеток хелперов и ряда других факторов) обеспечивают быстрый синтез большого количества специфических АТ, взаимодействующих с чужеродным Аг, и развитие эффективного иммунного ответа или аллергической реакции.

T-ЛИМФОЦИТЫ

Субсистема T-лимфоцитов представлена различными клонами T-лимфоцитов. Их пролиферация и дифференцировка происходит под контролем вилочковой железы. В связи с этим их обозначают как T-клетки, или тимус зависимые лимфоциты. T-клетки, как и B-лимфоциты, развиваются из стволовых кроветворных клеток костного мозга. Отсюда в виде клеток–предшественниц T-лимфоциты попадают с кровью в тимус, где происходит их антигеннезависимое созревание, сопровождающееся экспрессией на цитолемме специфических (у каждого лимфоцита своего) рецепторов.
Т лимфоциты ответственны за реализацию клеточного звена иммунного ответа, а также участвуют в регуляции гуморального иммунного ответа.
Т-клетки состоят из функциональных подтипов CD4+ и CD8+.
Т хелперы (TH) — CD4+ ИФН). В ходе иммунного ответа взаимодействуют с молекулами MHC класса II.gТ-клетки. При активации синтезируют и секретируют цитокины (ИЛ2, ИЛ4, ИЛ5, ИЛ6,
Цитотоксические T-лимфоциты (TC) — CD8+ Т-клетки, уничтожают инфицированные вирусом, опухолевые и чужеродные клетки при помощи цитолитического белка — перфорина. Взаимодействуют с молекулой MHC класса I плазматической мембраны клетки–мишени.
T супрессоры (TS) — представители CD8+ Т-клеток — регулируют интенсивность иммунного ответа, подавляя активность TH клеток; предотвращают развитие аутоагрессивных иммунных реакций; защищают организм от нежелательных последствий иммунной реакции, от чрезмерного воспаления и аутоагрессии.

NK-КЛЕТКИ

NK-клетки (МНС нерестригированн ИФН, ИЛ1, GM CSF. При активации (например, под влиянием ИЛ2) NK-клетки приобретают способность к пролиферации. Функция NK-клеток нарушена при синдроме Шедьяка–Хигаси. Дефект NK-клеток — причина хронических инфекций.gые киллеры, естественные киллеры) составляют до 15% всех лимфоцитов крови. Они не имеют поверхностных детерминант, характерных для T- и B-лимфоцитов, не имеют рецептора Т-лимфоцитов. В типичных NK-клетках экспрессируются дифференцировочные Аг CD2, СD7, CD56 и CD16 (рецептор Fc фрагмента IgG). В плазматической мембране активированных NK-клеток появляется гликопротеин CD69. NK-клетки распознают и уничтожают опухолевые и вирус-инфицированные клетки. Механизм распознавания неясен. Существует представление о наличии поверхностноклеточных молекул, защищающих клетки организма от цитотоксического действия NK-êлеток. Примером служит продукт гена HLA C. Распознавание рецептором NK-êлетки этой молекулы тормозит цитотоксическую активность NK-êлеток и таким образом защищает клетку, экспрессирующую HLA C. Модификация продукта гена HLA C вирусами или связанными с опухолью молекулами приводит к уничтожению этой клетки NK-êлеткой. NK-êлетки, располагая рецептором IgG (CD16), способны также взаимодействовать с клетками, окружёнными молекулами IgG, и уничтожать их (феномен АТ зависимой цитотоксичности). Активированные NK-клетки выделяют
Цитолиз. В отличие от цитотоксических T лимфоцитов, способность NK-клеток к цитолизу не связана с необходимостью распознавания молекул MHC на поверхности мишени. NK-клетки уничтожают клетку–мишень не путём фагоцитоза, а (после установления с ней прямого контакта) при помощи перфорина.
Гуморальная регуляция ИФН и ИЛ2 усиливают цитолитическую активность NK-клеток.g. Активность NK-клеток регулируется цитокинами.
Участие в антителозависимом клеточно-опосредованном цитолизе.
NK-клетки, наряду с макрофагами, нейтрофилами и эозинофилами, участвуют также и в АТ-зависимом клеточно-опосредованном цитолизе. Для этого NK-клетки экспрессируют на своей поверхности рецептор Fc фрагмента IgG (CD16). Fc фрагмент этих АТ взаимодействует с рецептором Fc фрагмента, встроенным в плазматическую мембрану NK-клетки.

АНТИГЕНПРЕДСТАВЛЯЮЩИЕ КЛЕТКИ

Антигенпредставляющие клетки (А-субсистема на рис. 16-3) присутствуют преимущественно в коже, лимфатических узлах, селезёнке и тимусе.
ИФН.gК ним относятся макрофаги, дендритные клетки, фолликулярные отростчатые клетки лимфоузлов и селезёнки, клетки Лангерханса, М клетки в лимфатических фолликулах пищеварительного тракта, эпителиальные клетки вилочковой железы. Эти клетки захватывают, перерабатывают и представляют Аг (эпитоп) на своей поверхности другим иммунокомпетентным клеткам, вырабатывают ИЛ1 и другие цитокины, секретируют простагландин E2 (PGE2), угнетающий иммунный ответ. Фагоцитарную и цитолитическую активность макрофагов усиливает
Дендритные клетки происходят из костного мозга и образуют популяцию долгоживущих клеток, которые запускают и модулируют иммунный ответ. В костном мозге их предшественники образуют субпопуляцию CD34+-клеток, которые способны дифференцироваться в клетки Лангерханса для эпителия и дендритные клетки для внутренней среды. Незрелые и неделящиеся предшественники дендритных клеток заселяют многие ткани и органы. Дифференцировку дендритных клеток поддерживают колониестимулирующий фактор гранулоцитов и макрофагов GM CSF и ИЛ3. Дендритные клетки имеют звёздчатую форму и в состоянии покоя несут на поверхности относительно небольшое количество молекул МНС. В отличие от клеток Лангерханса, интерстициальные дендритные клетки способны стимулировать синтез Ig В лимфоцитами. Все дендритные клетки могут вначале поступать в тимус-зависимую зону периферических лимфоидных органов, где созревают в так называемые интердигитирующие клетки.

T ХЕЛПЕРЫ

T хелпер распознаёт комплекс «Аг–молекула MHC класса II» на поверхности антигенпредставляющей клетки (рис. 16 5). Для активации Т хелпера специфическое узнавание Т хелпером фрагмента Аг на поверхности антигенпредставляющей клетки оказывается недостаточным. Активацию Т хелперов обеспечивает взаимодействие молекулы В7 (расположена на поверхности антигенпредставляющей клетки) с молекулой CD28 на поверхности Т хелпера. Узнавание Т хелпером нужных молекул на поверхности антигенпредставляющей клетки стимулирует секрецию ИЛ1 (рис. 16 5). Активированный ИЛ1 T хелпер синтезирует ИЛ2 и рецепторы ИЛ2, через которые агонист стимулирует пролиферацию Т хелперов и цитотоксических T лимфоцитов. В случае Т хелпера речь идёт об аутокринной стимуляции, когда клетка реагирует на тот агент, который сама же синтезирует и секретирует. Таким образом, после взаимодействия с антигенпредставляющей клеткой T хелпер приобретает способность отвечать на действие ИЛ2 всплеском пролиферации. Биологический смысл этого процесса состоит в накоплении такого количества Т хелперов, которое обеспечит образование в лимфоидных органах необходимого количества плазматических клеток, способных вырабатывать АТ против данного Аг.

 

Рис. 16 5. Взаимодействие клеток при иммунном ответе.
Рецептор Т хелпера распознаёт антигенную детерминанту (эпитоп) вместе с молекулой MHC класса II, выставленные на поверхности антигенпредставляющей клетки. В молекулярном взаимодействии участвует дифференцировочный Аг Т хелпера CD4. В результате подобного взаимодействия антигенпредставляющая клетка секретирует ИЛ1, стимулирующий в Т хелпере синтез и секрецию ИЛ2, а также синтез и встраивание в плазматическую мембрану того же Т хелпера рецепторов ИЛ2. ИЛ2 стимулирует пролиферацию Т хелперов и активирует цитотоксические T лимфоциты. Отбор В лимфоцитов производится при взаимодействии Аг с Fab фрагментами IgM на поверхности этих клеток. Эпитоп этого Аг в комплексе с молекулой MHC класса II узнаёт рецептор Т хелпера, после чего из T лимфоцита секретируются цитокины, стимулирующие пролиферацию В лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие АТ против данного Аг. Рецептор цитотоксических T лимфоцитов связывается с антигенной детерминантой в комплексе с молекулой MHC класса I на поверхности вирус-инфицированной или опухолевой клетки. В молекулярном взаимодействии участвует дифференцировочный Аг цитотоксического T лимфоцита CD8. После связывания молекул взаимодействующих клеток цитотоксический T лимфоцит убивает клетку–мишень.

 

B ЛИМФОЦИТЫ

ИФН. Под их действием B клетка активируется и пролиферирует, образуя клон. Активированный B лимфоцит дифференцируется в плазматическую клетку: увеличивается количество рибосом, гранулярная эндоплазматическая сеть и комплекс Гольджи становятся более выраженными.gАктивация B лимфоцита (рис. 16 5) предполагает прямое взаимодействие Аг с Ig на поверхности B клетки. В этом случае сам B лимфоцит процессирует Аг и представляет его фрагмент в комплексе с молекулой MHC II на своей поверхности. Этот комплекс распознаёт T хелпер, отобранный при помощи того же Аг. В активации В клетки участвуют две пары молекул: с одной стороны, специфическое взаимодействие Аг с рецептором (IgM) на поверхности В лимфоцита, а с другой стороны, молекула CD40 на поверхности В клетки взаимодействует с молекулой CD40L на поверхности Т хелпера, активирующего В клетку. Узнавание рецептором T хелпера комплекса «Аг–молекула MHC класса II» на поверхности B лимфоцита приводит к секреции из Т хелпера ИЛ2, ИЛ4, ИЛ5 и

ПЛАЗМАТИЧЕСКИЕ КЛЕТКИ

Плазматическая клетка синтезирует Ig. ИЛ6, выделяемый активированными Т хелперами, стимулирует секрецию Ig. Часть зрелых В лимфоцитов после Аг-зависимой дифференцировки циркулирует в организме как клетки памяти.

КЛЕТОЧНЫЙ ИММУННЫЙ ОТВЕТ

В клеточном иммунном ответе эффекторными клетками являются цитотоксические Т-лимфоциты, активность которых регулируют Т-хелперы и Т-супрессоры.

РЕАКЦИИ КЛЕТОЧНО-ОПОСРЕДОВАННОГО ЦИТОЛИЗА

Эффекторные клетки при помощи своих рецепторов распознают клетку–мишень и уничтожают её. За клеточно-опосредованный цитолиз отвечают не только Т-лимфоциты, но и другие субпопуляции лимфоидных клеток, а в некоторых случаях миелоидные клетки. В процессе узнавания участвуют различные молекулы, выставленные на поверхности взаимодействующих клеточных партнеров:

  • специфические Аг (например, вирусные пептиды на поверхности инфицированных клеток) в комплексе с молекулой MHC распознаются рецепторами цитотоксических Т клеток, преимущественно CD8+-клеток и некоторыми субпопуляциями CD4+-клеток;
  • антигенные детерминанты опухолевых клеток распознаются NK-êлетками без участия молекулы MHC класса I;
  • связанные с Аг АТ на поверхности клеток–мишеней, распознаются рецепторами Fc фрагментов NK-êлеток (феномен АТ-зависимой цитотоксичности).

ЦИТОТОКСИЧЕСКИЕ T ЛИМФОЦИТЫ

Предъявленный на поверхности клетки–мишени Аг в комплексе с молекулой MHC класса I связывается с рецептором цитотоксического T лимфоцита (TC, рис. 16 5). В этом процессе участвует молекула CD8 клеточной мембраны TC. Секретируемый T хелперами ИЛ2 стимулирует пролиферацию цитотоксических T лимфоцитов.

УНИЧТОЖЕНИЕ КЛЕТКИ–МИШЕНИ

Цитотоксический T лимфоцит раcпознаёт клетку–мишень и прикрепляетcя к ней. В цитоплазме активированного цитотоксического T лимфоцита присутствуют мелкие тёмные органеллы, напоминающие запаcающие гранулы cекреторных клеток. Гранулы концентрируютcя в той чаcти T киллера, которая расположена ближе к меcту контакта c клеткой–мишенью. Параллельно проиcходят переориентация цитоcкелета и cмещение в эту облаcть комплекса Гольджи, в котором и формируютcя гранулы. В них содержится цитолитический белок перфорин. Выделяемые T киллером молекулы перфорина полимеризуютcя в мембране клетки–мишени в приcутcтвии Ca2+. Сформированные в плазматической мембране клетки–мишени перфориновые поры пропуcкают воду и cоли, но не молекулы белка. Еcли полимеризация перфорина произойдет во внеклеточном проcтранcтве или в крови, где в избытке имеетcя кальций, то полимер не cможет проникнуть в мембрану и уничтожить клетку. Cпецифическое дейcтвие T киллера проявляется только как результат тесного контакта между ним и клеткой–мишенью, который доcтигаетcя за cчёт взаимодейcтвия Аг на поверхноcти жертвы c рецепторами T киллера. Cам T киллер защищён от цитотокcичеcкого дейcтвия перфорина.

МЕХАНИЧЕСКИЕ БАРЬЕРЫ


Кожа и слизистые оболочки эффективно защищают организм человека от патогенов. Необходимое условие проникновения многих возбудителей — микротравмы кожи и слизистых оболочек, либо укусы кровососущих насекомых.

Кожные покровы снабжены «неприступным» многослойным эпителием. Эта «линия обороны» подкреплена секретами кожных желёз и постоянным слущиванием отмерших слоёв эпидермиса. Нарушение целостности эпидермиса (например, при травмах или ожогах) — серьёзная предпосылка для микробных инвазий, особенно при контактах с инфицированными субстратами (почва, растительные остатки и т.д.). Следует помнить, что помимо барьерной роли кожа снабжена мощной системой иммунной защиты (лимфоциты, клетки системы мононуклеарных фагоцитов).

Слизистые оболочки могут иметь специальные анатомические структуры (например, реснички в мерцательном эпителии трахеи). Погружённые в слизь реснички формируют волны однонаправленных колебаний и перемещают слизь с заключённые в ней частицами вверх (к выходу их дыхательных путей) по поверхности эпителия (процесс мукоцилиарного транспорта).

ФИЗИКО-ХИМИЧЕСКИЕ ФАКТОРЫ

Механические барьерные свойства кожи дополняются секретами кожных желёз; последние проявляют прямую бактерицидную активность, либо снижают рН кожи до неблагоприятных значений за счёт секреции кислот (уксусной, молочной и др.).

СЛИЗИСТЫЕ ОБОЛОЧКИ
Слизистые оболочки имеют множество защитных факторов — от кислых значений рН желудка до секреции ферментов и АТ.

Слизь. Слизистые оболочки покрыты слоем слизи — организованной гелеобразной гликопротеиновой структуры, задерживающей и фиксирующей различные объекты, в том числе микроорганизмы. Слизь гидрофильна; через неё могут диффундировать многие образующиеся в организме вещества, в том числе бактерицидные (например, лизоцим и пероксидазы).

Лизоцим. В отделяемом слизистых оболочек содержится лизоцим — фермент, лизирующий клеточные стенки преимущественно грамположительных бактерий. Лизоцим присутствует и в других жидкостях организма (например, в слюне, слёзной жидкости).

Сурфактант. В нижних участках воздухоносных путей и дыхательном отделе лёгкого слизи нет, но поверхность эпителия покрыта слоем сурфактанта — поверхностно-активного вещества, способного фиксировать и уничтожать грамположительные бактерии.

Иммуноглобулины. На поверхность эпителия ЖКТ и респираторного тракта постоянно выделяются молекулы секреторного IgА.

ИММУНОБИОЛОГИЧЕСКАЯ ЗАЩИТА.

Если возбудитель преодолевает поверхностные физические и химические барьеры, его встречают факторы второй, иммунобиологической линии неспецифических защитных механизмов. Такие защитные механизмы принято делить на гуморальные и клеточные.
Комплекс конституциональных механизмов защиты тканей —эволюционно древняя форма организованной защиты — предшественник индуцированных (иммунных) реакций. Подтверждением этому является то, что значительная часть конституциональных компонентов защиты индуцибельна и находится в тканях в неактивной форме. Их активацию вызывают различные биологически активные вещества, большинство из которых являются медиаторами воспаления.
Ключевую роль в неспецифической защите внутренней среды организма играют комплемент и фагоцитирующие клетки. Их активность во многом дополняют различные БАВ (табл. 16–2).

СИСТЕМА КОМПЛЕМЕНТА

Система комплемента — группа по меньшей мере 26 сывороточных белков - компонентов комплемента (табл. 16–3). Компоненты системы комплемента участвуют в реакциях свёртывания крови, способствуют межклеточным взаимодействиям, необходимым для процессинга Аг, вызывают лизис бактерий и клеток, инфицированных вирусами. В норме компоненты системы находятся в неактивной форме. Активация комплемента приводит к поочередному (каскадному) появлению его активных компонентов в серии протеолитических реакций, стимулирующих защитные процессы.
Основные функции компонентов комплемента в защитных реакциях — стимуляция фагоцитоза, нарушение целостности клеточных стенок микроорганизмов мембраноповреждающим комплексом (особенно у видов, устойчивых к фагоцитозу, например гонококков) и индукция синтеза медиаторов воспалительного ответа (например, ИЛ1; табл. 16–4). Кроме того, система комплемента стимулирует воспалительные реакции (некоторые компоненты — хемоаттрактанты для фагоцитов), участвует в развитии иммунных (через активацию макрофагов) и анафилактических реакций. Активация компонентов комплемента может происходит по классическому и альтернативному путям.

ФАГОЦИТИРУЮЩИЕ КЛЕТКИ

Фагоциты выполняют не только защитные (поглощают и разрушают чужеродные агенты), но и дренажные функции (удаляют погибшие и деградировавшие структуры организма).
Фагоциты представлены клетками миелопоэтического ряда (полиморфноядерные лейкоциты) и макрофагально-моноцитарной системы (моноциты, тканевые макрофаги). Основные свойства фагоцитирующих клеток представлены в табл. 16–5.

Фагоциты непосредственно участвуют в осуществлении важных процессов:

  • Инициации иммунных реакций. Поглощая чужеродные агенты, макрофаги «перерабатывают» их (процессинг) и «представляют» (презентация) иммунокомпетентным клеткам. При этом макрофаги выделяют цитокины, активирующие лимфоциты.
  • Выполнении антителозависимого цитолиза. Это происходит благодаря экспрессии на поверхности фагоцита рецептора Fc-фрагмента IgG (CD16).

· ДРУГИЕ ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ

· ИНТЕРФЕРОНЫ

Система интерферона (ИФН) — важнейший фактор неспецифической резистентности организма человека. Интерфероны выполняют антивирусную, противоопухолевую, иммуномодулирующую и радиопротективную функции. Различают три класса ИФН: a-ИФН (его синтезируют лейкоциты периферической крови; ранее он был известен как лейкоцитарный ИФН); b-ИФН (синтезируется фибробластами; ранее обозначался как фибробластный ИФН); g-ИФН (продукт стимулированных Т-лимфоцитов, NK-клеток и, возможно, макрофагов; ранее назывался как иммунный ИФН).

По способу образования различают ИФН типа I (образуется в ответ на обработку клеток вирусами, молекулами двухцепочечной РНК, полинуклеотидами и рядом низкомолекулярных природных и синтетических соединений) и ИФН типа II (продуцируется лимфоцитами и макрофагами, активированными различными индукторами; действует как цитокин). ИФН видоспецифичны. Каждый биологический вид, способный к их образованию, продуцирует свои уникальные продукты, похожие по структуре и свойствам, но не способные проявлять перекрёстный антивирусный эффект (то есть действовать в условиях организма другого вида).

Механизм антивирусного действия. ИФН блокирут процессы проникновения и/или репродукции вирусов. Блокада репродуктивных процессов при проникновении вируса в клетку обусловлена угнетением трансляции вирусной мРНК. При этом противовирусный эффект ИФН не направлен против конкретных вирусов, то есть ИФН не обладают вирусоспецифичностью.

ИФН I. Основной биологический эффект — подавление синтеза вирусных белков; способны воздействовать на другие этапы репродукции вирусных частиц, включая отпочковывание дочерних популяций. «Антивирусное состояние» клетки развивается в течение нескольких часов после введения интерферонов или индукции их синтеза. При этом интерфероны не влияют на ранние этапы репликативного цикла (адсорбцию, пенетрацию и «раздевание» вирусов) — противовирусное действие проявляется даже при заражении клеток инфекционными РНК. ИФН не проникают в клетки, а взаимодействуют со специфическими мембранными рецепторами (ганглиозиды или аналогичные структуры, содержащие олигосахара). По связыванию ИФН с рецептором и реализации его эффектов механизм активности напоминает действие некоторых гликопептидных гормонов. ИФН активирует гены, некоторые из которых кодируют образование продуктов с прямым антивирусным действием — протеинкиназы и олигоаденилат синтетазы.

ИФН II (b-ИФН) также способны проявлять антивирусный эффект. Он связан с несколькими механизмами. Во-первых, активация интерфероном NO-синтетазы приводит к повышению внутриклеточного содержания оксида азота, ингибирующего размножение вирусов. Во-вторых, ИФН активирует эффекторные функции NK-клеток, Т-лимфоцитов, моноцитов, тканевых макрофагов и гранулоцитов, проявляющих антителозависимую и антителонезависимую цитотоксичность. Кроме того, ИФН блокирует депротеинизацию («раздевание») вирусов, высвобождение зрелых вирусных частиц из клетки, а также нарушает метилирование вирусной РНК. В смешанных культурах ИФН-чувствительных и ИФН-резистентных клеток «антивирусное состояние» чувствительных клеток распространяется и на популяции резистентных клеток.

ЕСТЕСТВЕННЫЕ АТ

Естественные АТ («антигеннезависимые», «неспецифические» АТ) составляют до 7% общего количества иммуноглобулинов в сыворотке крови неиммунизированных людей и животных. Их происхождение связывают с ответом иммунной системы на Аг нормальной микрофлоры. В эту же группу входят АТ, длительно циркулирующие после выздоровления от инфекционного заболевания. Часть пула подобных АТ синтезируется параллельно с образованием специфических АТ. Эти АТ низкоспецифичны, но способны перекрёстно реагировать с широким спектром Аг. Вызывают агглютинацию микробов, их разрушение (в присутствии комплемента), нейтрализуют вирусы и токсины, стимулируют фагоцитарные реакции (через опсонизацию возбудителей).

ЕСТЕСТВЕННЫЕ КИЛЛЕРЫ

Помимо фагоцитирующих клеток, важную роль в быстром реагировании организма на чужеродные Аг играют естественные киллеры (NK-клетки). Эту популяцию составляют большие зернистые лимфоциты, элиминирующие ауто-, алло- и ксеногенные опухолевые клетки; клетки, инфицированные вирусами и бактериями, а также простейшими. NK-клетки не имеют основных маркёров лимфоцитов (поэтому их также называют нулевые лимфоциты), но экспрессируют дифференцировочные CD2, CD56 и CD16 (рецептор Fc-фрагмента АТ) Аг.

· ИММУНОПАТОЛОГИЧЕСКИЕ СОСТОЯНИЯ И РЕАКЦИИ



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 425; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.217.228 (0.068 с.)