ТОП 10:

Тема 2.2. Теория вероятностей и математическая статистика



Вопросы:

1. Понятие события и вероятности события. Достоверные и невозможные события.

2. Классическое определение вероятностей.

3. Теорема сложения вероятностей. Теорема умножения вероятностей.

4. Формула полной вероятности. Формула Бейеса. Формула Бернулли.

5. Повторные и независимые испытания.

6. Случайная величина. Закон распределения случайной величины.

7. Дискретная и непрерывная случайные величины.

8. Математическое ожидание дискретной случайной величины.

9. Дисперсия случайной величины. Среднее квадратичное отклонение случайной величины.

10. Предмет и задачи математической статистики. Генеральная и выборочная статистические совокупности.

11. Выборки. Графическое изображение выборки. Полигон и гистограмма. Выборочный метод.

Задания для самопроверки.

1)Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.

2)Абонент забыл последние 2 цифры телефонного номера, но помнит, что они различны и образуют двузначное число, меньшее 30. С учетом этого он набирает наугад 2 цифры. Найти вероятность того, что это будут нужные цифры.

3)Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность того, что во всех ящиках окажется разное число шаров, при условии, что все ящики не пустые.

4)На шахматную доску случайным образом поставлены две ладьи. Какова вероятность, что они не будут бить одна другую?

5)Шесть рукописей случайно раскладывают по пяти папкам. Какова вероятность того, что ровно одна папка останется пустой?

6)Цифры 1, 2, 3, …, 9, выписанные на отдельные карточки складывают в ящик и тщательно перемешивают. Наугад вынимают одну карточку. Найти вероятность того, что число, написанное на этой карточке: а) четное; б) двузначное.

7)На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания номера слева направо, но не обязательно рядом.

8)На каждой из пяти одинаковых карточек напечатана одна из следующих букв: "а", "м", "р", "т", "ю". Карточки тщательно перемешаны. Найти вероятность того, что на четырех вынутых по одной карточке можно прочесть слово "юрта".

9)Ребенок имеет на руках 5 кубиков с буквами: А, К, К, Л, У. Какова вероятность того, что ребенок соберет из кубиков слово "кукла"?

10)Экспедиция издательства отправила газеты в три почтовых отделения. Вероятность своевременной доставки газет в первое отделение равна 0,95, во второе - 0,9, в третье - 0,8. Найти вероятность следующих событий:
а) только одно отделение получит газеты вовремя;
б) хотя бы одно отделение получит газеты с опозданием.

11)Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого сигнализатора и 0,9 для второго. Найти вероятность того, что при аварии сработает только один сигнализатор.

12)Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

13)В первой урне находятся 10 белых и 4 черных шаров, а во второй 5 белых и 9 черных шаров. Из каждой урны вынули по шару. Какова вероятность того, что оба шара окажутся черными?

14)Трое учащихся на экзамене независимо друг от друга решают одну и ту же задачу. Вероятности ее решения этими учащимися равны 0,8, 0,7 и 0,6 соответственно. Найдите вероятность того, что хотя бы один учащийся решит задачу.

15)Брошены две игральные кости. Событие А={выпадение шестерки на первой кости}. Событие В={сумма выпавших очков равна 7}. Являются ли события А и В независимыми?

16)Из 1000 ламп 380 принадлежат к 1 партии, 270 – ко второй партии, остальные к третьей. В первой партии 4% брака, во второй - 3%, в третьей – 6%. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа – бракованная.

17)Из 30 стрелков 12 попадает в цель с вероятностью 0,6, 8 - с вероятностью 0,5 и 10 – с вероятностью 0,7. Наудачу выбранный стрелок произвел выстрел, поразив цель. К какой из групп вероятнее всего принадлежал этот стрелок?

18)Сотрудники отдела маркетинга полагают, что в ближайшее время ожидается рост спроса на продукцию фирмы. Вероятность этого они оценивают в 80%. Консультационная фирма, занимающаяся прогнозом рыночной ситуации, подтвердила предположение о росте спроса. Положительные прогнозы консультационной фирмы сбываются с вероятностью 95%, а отрицательные – с вероятностью 99%. Какова вероятность того, что рост спроса действительно произойдет?

19)В группе спортсменов лыжников в 2 раза больше, чем бегунов, а бегунов в 3 раза больше, чем велосипедистов. Вероятность выполнить норму для лыжника 0,9, для бегуна 0,75, для велосипедиста - 0,8. Найти вероятность того, что спортсмен, выбранный наугад, выполнит норму.

20)В двух урнах находится соответственно 4 и 5 белых и 6 и 3 чёрных шаров. Из каждой урны наудачу извлекается один шар, а затем из этих двух наудачу берется один. Какова вероятность, что это будет белый шар?

21)Из n аккумуляторов за год хранения k выходит из строя. Наудачу выбирают m аккумуляторов. Определить вероятность того, что среди них l исправных.
n=100,k=7,m=5,l=3.

22)Устройство, состоящее из пяти независимо работающих элементов, включается за время Т. Вероятность отказа каждого из них за это время равна 0,2. Найти вероятность того, что откажут:
а) три элемента;
б) не менее четырех элементов;
в) хотя бы один элемент.

23)Сколько следует сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?

24)Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более одного потребует ремонта; б) хотя бы один не потребует ремонта.

25)Что более вероятно выиграть у равносильного противника: не менее двух партий из трёх или не более одной из двух?

26)На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

27)В магазине имеется 15 автомобилей определенной марки. Среди них 7 черного цвета, 6 серого и 2 белого. Представители фирмы обратились в магазин с предложением о продаже им 3 автомобилей этой марки, безразлично какого цвета. Составьте ряд распределения числа проданных автомобилей черного цвета при условии, что автомобили отбирались случайно.

28)В городе 4 коммерческих банка. У каждого риск банкротства в течение года составляет 20%. Составьте ряд распределения числа банков, которые могут обанкротиться в течение следующего года.

29)Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

30)В магазине продаются 5 отечественных и 3 импортных телевизора. Составить закон распределения случайной величины – числа импортных из четырех наудачу выбранных телевизоров. Найти функцию распределения этой случайной величины и построить ее график.

31)Дан следующий вариационный ряд
1 2 3 4 5 6 7 8 9 10
1 1 2 2 4 4 4 5 5 5
Требуется
1) Построить полигон распределения
2) Вычислить выборочную среднюю, дисперсию, моду, медиану.
3) Построить выборочную функцию распределения
4) Найти несмещенные оценки математического ожидания и дисперсии.

32)Проведено выборочное обследование магазинов города. Имеются следующие данные о величине товарооборота для 50 магазинов города (xi – товарооборот, млн. руб.; ni – число магазинов).
xi 25-75 75-125 125-175 175-225 225-275 275-325
ni 12 15 9 7 4 3
Найти
а) среднее, среднее квадратическое отклонение S и коэффициент V;
б) построить гистограмму и полигон частот.

33)Из генеральной совокупности извлечена выборка объема n. Найти выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, исправленную выборочную дисперсию, коэффициент вариации, моду и медиану.
10,5 11 11,5 12 12,5 13 13,5
2 18 40 25 6 5 4

34)Дана выборка. Требуется:
а) Построить статистический ряд распределения частот и полигон частот;
б) Вариационный ряд;
в) Найти оценки математического ожидания и дисперсии;
г) Найти выборочные моду, медиану, коэффициент вариации, коэффициент асимметрии.
10,20,20,5,15,20,5,10,20,5.







Последнее изменение этой страницы: 2017-02-10; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.235.55.253 (0.01 с.)