Билет №24. Размеры микро- и макрообъектов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Билет №24. Размеры микро- и макрообъектов.



БИЛЕТЫ ПО КСЕ

БИЛЕТЫ ПО КСЕ

Билет №24. Размеры микро- и макрообъектов.

Минимально видимая глазом длина сопоставима с толщиной волоса - около 0,1 мм. Если быть более точным, то невооруженным глазом с расстояния наилучшего видения (около 25 см) наблюдатель со средней остротой зрения может отличить одну мелкую частицу (или деталь объекта) от другой, лишь если они отстоят друг от друга на расстоянии около 0,08 мм. Усилить наше зрение может лупа - собирающая линза - или система линз с небольшим фокусным расстоянием (10-100 мм). С ее помощью можно добиться увеличения от 2 до 50 раз, т.е. объект можно рассмотреть в среднем в 10 раз детальнее (XVI в.) Оптический микроскоп впервые успешно применил в научных исследованиях англичанин Р. Гук, установивший в 1670-х гг. клеточное строение животных и растительных тканей. Примерно в это же время голландский ученый А. Левенгук открыл с помощью оптического микроскопа микроорганизмы. Развитию методов микроскопических исследований существенно способствовала разработка теории образования изображений несамосветящихся объектов в микроскопах немецким физиком Э. Аббе (вторая половина XIX в.). Современный оптический микроскоп дает увеличение примерно в 100-1000 раз. Размеры объектов составляют 10-7м. Возможности оптических микроскопов ограничены разрешающей способностью, т.е. способностью давать раздельные изображения двух близких друг к другу точек объекта. Для того чтобы рассмотреть более мелкие объекты, используют электронный микроскоп - прибор, в котором для получения увеличенного изображения используется электронный пучок. Разрешающая способность электронного микроскопа в сотни раз выше, чем у оптического микроскопа. Электронные микроскопы позволяют получить с помощью наблюдения и фотографирования многократно увеличенные объекты (вплоть до 10 раз) и увидеть объекты размером 10-9 м. Физические основы электронно-оптических приборов были заложены ирландским математиком У.Р. Гамильтоном почти за 100 лет до появления электронных микроскопов, которые стали создаваться в первой половине XX в., а широкое применение в естествознании получили уже во второй половине XX в. Высокие разрешения этих микроскопов достигаются благодаря чрезвычайно малой длине волны электронов. В настоящее время применяется метод изучения объектов с помощью рассеяния электронов. Обратимся к макрообъектам. Размеры большей части предметов, окружающих нас, сопоставимы с размерами человеческого тела. Расстояния до объектов, находящиеся на больших расстояниях (холм, лес, поле и т.д.), можно оценить шагами. Таким образом, непосредственное восприятие человеком расстояний возможно в диапазоне от 0,1 мм до приблизительно 100 км. Оценка размеров континентов, а тем более окружности Земли вряд ли возможна с помощью шагов. В этом случае целесообразно поступить так. Если известны средняя скорость движения некоторого вида транспорта (поезда, машины, самолета и пр.) и время в пути, можно получить представление о преодоленном расстоянии: если ехать из одного пункта в другой со скоростью 100 км/ч в течение 7 ч, то ясно, что было преодолено расстояние 700 км; если самолет за 9 ч долетает из Москвы до Петропавловска-Камчатского при средней скорости 800-850 км/ч, то эти населенные пункты разделены расстоянием приблизительно 7500 км. Оценить расстояние до небесных тел можно также с помощью очень простых способов. Ближайшим небесным телом для нас является Луна. Еще во II в. до н.э. Гиппарх измерил угол, под которым видна тень, отбрасываемая Землей на Луну во время лунного затмения, а зная диаметр Земли, он довольно точно определил расстояние от Земли до Луны. В настоящее время для таких целей используют радиолокацию. Сигнал радара направляют на объект и измеряют время, протекшее от посылки сигнала до возвращения отраженной волны.
 
 

Наблюдения за движением планет позволяют определить относительные размеры их орбит. Так, Меркурий всегда наблюдается близко от Солнца, никогда не далее 23°, т.е. радиус орбиты Меркурия равен 0,38 радиуса земной орбиты (немногим более 1/3 ее радиуса). Таким образом, можно построить картину Солнечной системы, соблюдая найденные пропорции (рис. 5.7).

Для того чтобы узнать истинный радиус орбит планет, следует определить расстояние только до одной из них, а остальные рассчитать по уже известной пропорции. Здесь также пользуются радарным методом. Свету требуется чуть больше 8 мин, чтобы дойти от Солнца до Земли, т.е. расстояние Земля — Солнце составляет 150 млн км.

Размеры всей Солнечной системы таковы, что свету для того, чтобы пройти ее, нужно 11ч.

Размер солнца кажется нам таким же, как Луна, но оно в 375 раз дальше, и диаметр его должен быть в 375 раз больше лунного: он равен 1,4 млн км.



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 470; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.120.133 (0.004 с.)