ТОП 10:

Физика возвращается к повседневным заботам



После окончания войны погоня за новыми частицами возобновилась, и ведущая роль здесь отводилась ускорителю. Частицы сталкивали с мишенью, после чего тщательно изучали получавшиеся осколки. При относительно малых энергиях, доступных в ту пору, протоны застревали в больших ядрах, образовывая короткоживущие более крупные ядра. Некоторые из этих ядер были радиоактивными и распадались на ядра поменьше и другие частицы. Получавшиеся более крупные ядра пополняли Периодическую таблицу, к радости химиков, а физики оставались без новых частиц.

Тем временем строились все более крупные циклотроны, получавшие частицы со все большей энергией. Ввиду эквивалентности массы и энергии (согласно знаменитой формуле Эйнштейна Е = тс2) столкновения при больших энергиях позволяли получать более тяжелые частицы. И вскоре физиков, работавших на ускорителе, ждал успех.

Снимки из камеры Вильсона указали на следы, или треки, невиданных прежде частиц: заряженных пионов +, π-), или пи-мезонов, и каонов (К+, К-), или К-мезонов, нейтральных пиона и каонов, лямбда-частицы, сигма-частицы и пр. И хотя частицы были нестабильны, распадались вскоре на более привычные частицы, все это свидетельствовало о том, что материя таит в себе еще много неожиданного.

Гонка за частицами ширилась. Число циклотронов росло, а их устройство совершенствовалось. В приборе, именуемом синхротроном, ускоряющее поле синхронизировалось для обеспечения постоянного радиуса траектории у пучка частиц. На смену камере Вильсона пришла пузырьковая камера, где образование пузырьков в перегретом жидком водороде позволяло видеть следы частиц. Все это походило на исследование разметанного взрывом стога сена в поисках короткоживущих иголок. Так, одному аспиранту для диссертации пришлось изучить 240 тыс. снимков из пузырьковой камеры.

Итогом всех этих усилий стал настоящий бум частиц: их было найдено свыше ста. Нобелевский лауреат Энрико Ферми заметил своему студенту Леону Ледерману (впоследствии тоже Нобелевскому лауреату): «Молодой человек, если бы я мог упомнить названия всех элементарных частиц, я бы стал ботаником».

Появление кварков

Разросшееся скопище частиц создало в физике положение, сходное с тем, что переживала химия до появления Периодической таблицы Менделеева в 1869 году. В их основе должно лежать нечто общее, только вот что? Физики, исходя из теоретических соображений, пытались по-разному группировать частицы в поисках некоего порядка. Тяжелые и средние по массе частицы были названы адронами, а в дальнейшем их разбили на барионы и мезоны. Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, названные лептонами, участвовали в электромагнитном и слабом взаимодействии. Но подобно тому как электроны, протоны и нейтроны нужны были для объяснения природы объявившегося скопища частиц, чтобы объяснить природу всех этих частиц, требовалось нечто более основательное.

В 1964 году американские физики Марри Гелл-Ман и Джордж Цвейг независимо друг от друга предложили новый подход. Все адроны, оказывается, состоят из трех более мелких частиц и соответствующих им античастиц. Гелл-Ман назвал эти новые элементарные частицы кварками, заимствовав название из романа Джеймса Джойса «Поминки по Финнегану», где герою в снах часто слышались слова о таинственных трех кварках. Эти (первые) три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладают дробным электрическим зарядом +2/3, —1/3 и —1/3 соответственно, а у их антикварков эти заряды противоположны.

Согласно данной модели протоны и нейтроны составлены из трех кварков: uud и udd соответственно, тогда как обширная группа вновь открытых мезонов состоит из пары кварк—антикварк. Например, отрицательный пион представляет собой сочетание нижнего кварка и верхнего антикварка. Кварки предлагались в качестве рабочей гипотезы, и, хотя они позволяли решить вопрос с упорядочиванием обширного собрания частиц с математической точки зрения, их существование не внушало доверия из-за отсутствия опытных данных.

В опытах протоны с нейтронами представляли собой размытые кусочки вещества, подобные атому согласно томсоновой модели «пудинга с изюмом». Однако эти частицы были значительно меньше атома, так что их нельзя было прощупать, обстреливая альфа-частицами, как проделал Резерфорд с атомами. Альфа-частицы были слишком крупными, и выведать что-либо с их помощью оказывалось невозможным.

Коллектив ученых Стэнфордского отделения Массачусетского технологического института на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжелый изотоп водорода, ядро которого содержит один протон и один нейтрон). Они измеряли угол и энергию рассеяния электронов после столкновения. При малых энергиях электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман и Джеймс Бьёркен, как и Резерфорд в работе по выявлению строения ядра с помощью альфа-частиц, истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков. Теперь приходилось считаться с гипотезой существования кварков.







Последнее изменение этой страницы: 2017-02-10; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.241.200 (0.011 с.)