Более элементарные по сравнению с атомами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Более элементарные по сравнению с атомами



Физика

Почему одни частицы обладают массой, а другие нет?

...очертанья грозные событий, Нам предстоящих...

У. Шекспир. Троил и Крессида

Пер. Т. Гнедич

Физика занимается изучением свойств покоящейся и движущейся материи и различных видов энергии. Связанные с движением свойства (скорость, ускорение и момент наряду с кинетической и потенциальной энергией) нам хорошо известны. А природа самой массы, присущей большинству форм материи, непонятна. И действительно, происхождение массы — крупнейшая нерешенная задача физики.

Масса

Всем нам знакома масса. Это нечто само собой разумеющееся. Мы все обладаем той или иной массой. Масса — виновница того, что легче вытащить застрявший автомобиль, нежели детскую коляску. Благодаря массе сила тяготения удерживает нас на Земле.

Только неясно происхождение массы. Многим, но не всем элементарным частицам Вселенной присуща масса [покоя]. Почему одни обладают ею, а другие — нет? Что «придает» массу тем или иным частицам? Почему масса частиц различается? Отсутствует ли что-то у безмассовых частиц помимо массы? Ответы на эти вопросы, возможно, находятся в так называемых хиггсовых полях, но прежде чем уяснить смысл неуловимых хиггсовых полей, необходимы кое-какие предварительные сведения.

Начнем с того, что масса тела связана с количеством содержащегося в нем вещества, а всем хорошо известно, что составляет вещество: это набор и сочетание атомов. Но что образует атомы? Атомы состоят из электронов, протонов и нейтронов. Электроны — элементарные частицы (не составные), чего нельзя сказать о протонах и нейтронах. Они образованы из кварков, и, похоже, именно кварки и электроны и есть истинно элементарные частицы.

Рис. 2.1. Кирпичики, составляющие материю

Прежде чем обратиться к непонятной природе массы, посмотрим, откуда появляются кварки (рис. 2.1). По мере ознакомления с другими элементарными частицами мы увидим, что более элементарными по сравнению с частицами оказываются поля, и изучим самую признанную в физике теорию поля, именуемую стандартной моделью. Затем рассмотрим недочеты стандартной модели: она не определяет источник массы и обходит стороной вопрос тяготения. Наконец, мы исследуем теории, выходящие за рамки стандартной модели, где мог бы быть решен вопрос о происхождении массы.

Четыре силы

Словно мало было хлопот с новыми частицами, в те же 1930-е годы были открыты еще и новые поля. К уже известному тяготению и электромагнетизму добавились силы ядерного взаимодействия, удерживающие протоны и нейтроны в ядре, и силы слабого взаимодействия, вызывающие некоторые процессы радиоактивного распада. Любопытно, что слабое и сильное взаимодействия достигали своей максимальной силы на очень малом расстоянии, причем их сила падала до нуля, стоило частицам удалиться на расстояние, превышающее размеры ядра. Вот почему мы их не видим: они действуют на расстоянии, недоступном нашим органам чувств.

В 1930-е годы Энрико Ферми выдвинул теорию слабого взаимодействия, предсказавшую существование еще одной новой частицы. Эта электрически нейтральная частица нужна была для учета недостающей энергии в наблюдаемом [бета-]распаде. Ферми назвал ее нейтрино. Нейтрино оказалось чуть ли не частицей-призраком, столь редко взаимодействующей с обыкновенным веществом, что для остановки половины падающих нейтрино понадобилась бы свинцовая пластина толщиной в восемь световых лет (превышающей более чем в 2 раза расстояние от Солнца до ближайшей звезды). И все же нейтрино [точнее, антинейтрино] были обнаружены опытным путем американскими физиками Фредериком Рейнесом и Клайдом Коуэном, но лишь в 1 953— 1956 годах. Это и требовалось физике — другая частица.

Вмешательство политики

1930-е годы принесли другое несчастье: Вторую мировую войну.

Помимо сокращения отпускаемых на исследования средств военные нужды отвлекли огромное множество физиков, вынудив их с 1941 года заниматься Манхэттенским проектом. Изначально целью этого проекта было изучение энергии, высвобождаемой при расщеплении ядер тяжелых металлов вроде урана, чтобы определить, можно ли использовать эту энергию для создания оружия и в случае утвердительного ответа сделать это раньше немецких физиков, которые, как считалось, работали над схожим замыслом. (Пьеса «Копенгаген» Майкла Фрайна повествует о планах немцев и союзников по созданию атомной бомбы на примере взаимоотношений физиков Нильса Бора и Вернера Гейзенберга.)

Задача физики состояла в постижении устройства ядра, техники — в претворении этого знания во взрывное устройство. Об этической стороне дела задумались после победы над немцами, хотя те не занимались созданием атомной бомбы. После капитуляции Германии в мае 1945 года некоторые физики в Соединенных Штатах Америки вышли из Манхэттенского проекта. Оставшиеся создали атомную и водородную бомбы, последствия чего мы ощущаем до сих пор.

Появление кварков

Разросшееся скопище частиц создало в физике положение, сходное с тем, что переживала химия до появления Периодической таблицы Менделеева в 1869 году. В их основе должно лежать нечто общее, только вот что? Физики, исходя из теоретических соображений, пытались по-разному группировать частицы в поисках некоего порядка. Тяжелые и средние по массе частицы были названы адронами, а в дальнейшем их разбили на барионы и мезоны. Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, названные лептонами, участвовали в электромагнитном и слабом взаимодействии. Но подобно тому как электроны, протоны и нейтроны нужны были для объяснения природы объявившегося скопища частиц, чтобы объяснить природу всех этих частиц, требовалось нечто более основательное.

В 1964 году американские физики Марри Гелл-Ман и Джордж Цвейг независимо друг от друга предложили новый подход. Все адроны, оказывается, состоят из трех более мелких частиц и соответствующих им античастиц. Гелл-Ман назвал эти новые элементарные частицы кварками, заимствовав название из романа Джеймса Джойса «Поминки по Финнегану», где герою в снах часто слышались слова о таинственных трех кварках. Эти (первые) три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладают дробным электрическим зарядом +2/3, —1/3 и —1/3 соответственно, а у их антикварков эти заряды противоположны.

Согласно данной модели протоны и нейтроны составлены из трех кварков: uud и udd соответственно, тогда как обширная группа вновь открытых мезонов состоит из пары кварк—антикварк. Например, отрицательный пион представляет собой сочетание нижнего кварка и верхнего антикварка. Кварки предлагались в качестве рабочей гипотезы, и, хотя они позволяли решить вопрос с упорядочиванием обширного собрания частиц с математической точки зрения, их существование не внушало доверия из-за отсутствия опытных данных.

В опытах протоны с нейтронами представляли собой размытые кусочки вещества, подобные атому согласно томсоновой модели «пудинга с изюмом». Однако эти частицы были значительно меньше атома, так что их нельзя было прощупать, обстреливая альфа-частицами, как проделал Резерфорд с атомами. Альфа-частицы были слишком крупными, и выведать что-либо с их помощью оказывалось невозможным.

Коллектив ученых Стэнфордского отделения Массачусетского технологического института на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжелый изотоп водорода, ядро которого содержит один протон и один нейтрон). Они измеряли угол и энергию рассеяния электронов после столкновения. При малых энергиях электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман и Джеймс Бьёркен, как и Резерфорд в работе по выявлению строения ядра с помощью альфа-частиц, истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков. Теперь приходилось считаться с гипотезой существования кварков.

Стандартная модель

К середине 1970-х все теоретические и опытные наработки слились в единую теорию, названную стандартной моделью. В ее основе лежат математические выкладки, не являющиеся предметом настоящей книги, так что не следует забывать, что модель опирается на мощный математический аппарат.

Основой стандартной модели стало представление, что кирпичиками Вселенной выступают поля, а не частицы. Первоначально поля понадобились для решения проблемы дальнодействия. Каким образом одно тело способно воздействовать на другое, если оба они находятся на некотором расстоянии друг от друга и между ними нет ничего материального? Ньютон ответил, что они воздействуют друг на друга посредством некой силы.

Для уяснения понятия поля нам следует пойти еще дальше в своих отвлеченных рассуждениях. Удалим одно тело. Теперь представим оставшееся, способное воздействовать на любое проходящее рядом тело. Это воздействие и составляет поле, проявляемое данным телом. При таком подходе поле есть возможность проявления силы. Например, поле тяготения часто изображается в виде стрелок, обращенных в сторону массы, как на рис. 2.2. Это вовсе не физические линии или стрелки в пространстве, а лишь указание на то, что любое, помещенное в любую точку тело будет ощущать действие некой силы в направлении, указанном стрелками.

Сходным образом линии электрического поля окружают заряд, а линии магнитного поля — магниты. Поскольку железные опилки обладают ярко выраженными магнитными свойствами, на помещаемых в учебниках картинках видно, как эти опилки распределяются вокруг полюсов магнита и делают как бы зримым само магнитное поле.

Вначале полю отводилось место сугубо понятийного средства, но ныне оно играет ключевую роль в физике. Согласно стандартной модели:

— исходными кирпичиками Вселенной являются поля,

— крошечные сгустки энергии (кварки или лептоны) проявляются при перенесении квантовых законов на поля,

— частицы взаимодействуют между собой посредством обмена другими сгустками энергии (бозонами), которые невозможно наблюдать ввиду ограничений, накладываемых принципом неопределенности.

Рис 2.2. Изображение силы тяготения

Итак, классическая картина дальнодействующих сил между частицами сменилась взаимодействием, обменом виртуальными сгустками энергии (прежде волнами) между квантованными жгутами энергии поля (прежде частицами). Здесь наблюдается полный разрыв с прежними представлениями.

Стандартная модель включает два вида взаимодействия: сильное и электрослабое.

1. Сильное взаимодействие: частицы, появляющиеся в соответствии с законами квантования ряда полей, называются кварками. Сегодня известно шесть кварков, (и связанных с ними антикварков), входящих в три семейства [или поколения], как показано на рис. 2.3. Вот их названия:

семейство 1: верхний и нижний;

семейство 2: очарованный и странный;

семейство 3: верхний и нижний.

Кварки взаимодействуют друг с другом через сильное взаимодействие, обмениваясь виртуальными частицами, именуемыми глюонами.

2. Электрослабое взаимодействие: частицы, появляющиеся в соответствии с законами квантования ряда полей, называются лептонами. Существует шесть лептонов (и связанных с ними антилептонов), входящих в три семейства, как показано на рис. 2.4.

Вот их названия:

семейство 1: электрон и электронное нейтрино;

семейство 2: мюон и мюонное нейтрино;

семейство 3: тау и тау-нейтрино.

Лептоны взаимодействуют, обмениваясь виртуальными частицами: фотоном, двумя W-бозонами и одним Z-бозоном.

На обобщенном рис. 2.5 представлены основные элементарные частицы и переносчики их взаимодействий.

В табл. 1 перечислены частицы с их спином, зарядом и массой. Поражает огромный разброс масс — но об этом речь пойдет далее.

Согласно стандартной модели здесь прослеживается механизм функционирования атома. Протоны и нейтроны удерживает в ядре обмен виртуальными глюонами между составляющими эти частицы кварками.

Рис. 2.5. Основные частицы

Связь электронов с протонами в ядре обеспечивается обменом виртуальными фотонами. Заметим, что три семейства кварков в точности соотносятся с тремя семействами лептонов. Вот только неизвестно, почему их ровно три. Первое семейство кварков и лептонов стабильно и составляет всю материю вокруг нас. Другие два семейства нестабильны, распадаясь через короткое время на более устойчивых собратьев. Если же говорить о возможности существования большего числа семейств кварков и лептонов, имеется два экспериментальных подтверждения, что таких семейств три. Одно подтверждение получено в 1998 году на усилителе при распаде нейтрального лямбда-гиперона [лямбда-ноль-гиперона] с образованием нейтрино, а другое — из астрономических наблюдений (подробнее см. след. параграф).

Все перечисленные частицы, за исключением глюона и фотона, обладают массой. Нулевая масса фотона обусловливает большую дальность электромагнитного взаимодействия, поскольку его переносчик может перемещаться со скоростью света. Слабое взаимодействие имеет значительно более короткий радиус действия ввиду большой массы его переносчиков, что не позволяет им двигаться столь же быстро, как фотоны. Все кварки и лептоны подчиняются ряду статистических правил, установленных Ферми и Дираком, и обобщенно именуются фермионами. Переносчики взаимодействия подчиняются другому ряду правил, выдвинутых индийским физиком Шатьендранатом Бозе и Эйнштейном, и называются бозонами. (См.: Список идей, 3. Фермионы и бозоны.)

Таблица 1 Основные частицы и их массы

 

Частицы Приблизительная масса, ГэВ*
Фермионы  
Верхний кварк 5 х10-3
Нижний кварк 9 x10-3
Электрон 0,51 х10-3
Электронное нейтрино < 7,2 x 10-9
Очарованный кварк 1,35
Странный кварк 0,175
Мюон 0,106
Мюонное нейтрино < 2,7 х 10-4
Истинный кварк  
Красивый кварк 4,5
Тау 1,78
Тау-нейтрино < 3 x 10-2
Бозоны
Фотон  
W+w W- 80,2
Z 91,2
Глюон  
Хиггса частица (нет пока опытного подтверждения) 63-800

* Масса дается в единицах энергии, ГВт, равных миллиардам электрон-вольт согласно эйнштейновской формуле эквивалентности массы и энергии, Е = тс2.

Проверка стандартной модели

Стандартная модель впервые предложена в 1974 году. В ту пору еще не было открыто семь предсказанных ею частиц. В последующие 20 лет благодаря проведению опытов на более мощных ускорителях все они были открыты, за исключением бозона Хиггса.

Помимо наблюдений самих частиц опытным путем проверялись многие свойства частиц, предсказанные стандартной моделью. В результате выяснилось, что предсказанные и экспериментально полученные данные прекрасно согласовывались друг с другом. Примером может служить лэмбовский сдвиг. В 1947 году американский физик Уиллис Лэмб измерил частотный сдвиг в излучении, поглощаемом или испускаемом при переходе атома водорода из одного энергетического состояния в другое с вырожденными энергетическими уровнями. Значительно позже стандартная модель дала для частоты излучаемого при этом переходе света величину 1057,860+/-0,009 МГц, тогда как измеренное Лэмбом значение равнялось 1057,65 +/--0,009 МГц. Обе величины различаются всего на '/100 000. С учетом погрешности оказалось, что предсказанное и полученное значения фактически совпали. Такое удивительное соответствие теории эксперимента наблюдалось во многих случаях, что служило еще большим подтверждением верности данной модели.

Поиск более тяжелых частиц требовал и более мощных ускорителей, а по экономическим соображениям физика нуждалась не в столь затратном средстве изысканий. Подобно Карлу Андерсону, воспользовавшемуся природными космическими лучами в качестве источника частиц высокой энергии, физики принялись за поиски природных явлений с участием частиц, предсказанных стандартной моделью. Единственный период, когда могли существовать такие частицы, приходился на первые мгновения «большого взрыва», когда вещество и энергия заполняли Вселенную. В первые моменты вспышки после «большого взрыва» ощущались невиданный жар и плотность. Наличествовали все семейства элементарных частиц, так что первые мгновения «большого взрыва» были как бы огромной лабораторией для проверки стандартной модели. И несмотря на недоступность того события, можно делать предсказания о существующих ныне условиях и сравнивать их с опытными данными.

Астрофизик Дэвид Шрамм часто повторял слова советского физика Якова Зельдовича: «Вселенная — ускоритель для бедных. Эксперименты не нуждаются в финансировании, от нас требуется лишь сбор опытных данных и верное их толкование». Например, если существует четыре семейства элементарных частиц, количество гелия, образованного в первые минуты после «большого взрыва», должно составлять свыше 26% [вещества] нынешней Вселенной. Три же семейства элементарных частиц привели бы к созданию лишь 25% гелия. А поскольку выявлено именно такое количество гелия, ограничение стандартной модели тремя семействами кварков и лептонов находит тем самым убедительное опытное подтверждение.

Совместная работа физиков высоких энергий и астрофизиков в изучении первых мгновений после «большого взрыва» приводит к многим полезным результатам. Например, сочетая по-разному три фундаментальных физических постоянных (постоянную Планка, скорость света и постоянную тяготения), мы получаем минимальные значения таких основополагающих величин, как время, масса и энергия. Они называются планковскими масштабами (или размерностями):

время: 10-43 с, длина: 10-35 м, энергия: 10 9Дж.

Если энергию Планка сосредоточить в объеме куба со стороной, равной длине Планка, то эквивалентная масса (Е = тc2) в этом крохотном пространстве была бы столь плотной, что свет не мог бы его покинуть, оказавшись отрезанным от остальной Вселенной, — черная дыра. Таким образом, расстояния меньше планковской длины теряют смысл, так что ниже этого уровня пространство и время предстают «квантовой пеной», где уже не действуют никакие физические законы.

Исходя из планковских масштабов, можно представить возможную картину начала Вселенной. Субмикроскопическая квантовая флуктуация проходит стадию раздувания с очень быстрым расширением, когда по мере падения температуры происходит «вымораживание» четырех основных взаимодействий, подобно тому, как жидкая вода превращается в лед. Если взаимодействие с полями Хиггса определяет массу частиц, эта величина может принимать совершенно случайное значение, в зависимости от того, как идет остывание. При таком повороте событий возможно возникновение различных вселенных со слегка различающимися значениями масс элементарных частиц.

Нужна новая физика

Как видим, опытное подтверждение существует лишь для стандартной модели. Однако своей проверки ждут многие теории. Вот некоторые из них.

Теории великого объединения (ТВО) и теории всего сушего (ТВС). Названия лишь вводят в заблуждение, поскольку предлагают больше, чем могут дать. В действительности они лишь указывают на объединение известных взаимодействий в рамках одной, всеобъемлющей теории. ТВО объединяют электрослабое и сильное взаимодействие. Более амбициозные ТВО «замахиваются» не только на сильное и электрослабое взаимодействия, но и на гравитационное. Даже если такая теория будет создана, это вряд ли ознаменует конец науки, которая полна иных, требующих ответа вопросов.

М-теория. Физик из Принстона Эдуард Виттен говорит, что «М означает "магический" или "мембрана", как кому нравится». Некоторые прежние теории оказываются частным случаем этой общей теории — так называемые теории струн, суперструн и бран. Вместо того чтобы рассматривать кварки и лептоны в виде точечных (одномерных) частиц, данная теория предлагает считать их двухмерными (струнами) или даже многомерными (мембранами, сокращенно бранами). Эти родственные теории объединяют все силы, включая тяготение, и не содержат никаких бесконечностей, требующих перенормировки, как в случае со стандартной моделью. Но раз они требуют числа размерностей больше четырех (сейчас в ходу 10, 11 и 26 размерностей), дополнительные размерности могут представать полностью свернутыми или по своей малости недоступными современным измерительным приборам либо огромными, чуть ли не бесконечными. Согласно одной из таких теорий все размерности Вселенной вначале были одинаковой величины, но затем разделились и изменяли свою величину по мере расширения и охлаждения Вселенной. Трудность в выборе какой-либо теории данного рода обусловлена тем, что наш опыт или интуиция неприменимы к размерностям, выходящим за рамки четырехмерного мира, в котором мы живем.

Суперсимметрия (СУСИ). В случае замены фермионов на бозоны и наоборот описывающие основные взаимодействия уравнения должны оставаться истинными. Данная теория предсказывает существование гораздо более тяжелых суперпартнеров для всех частиц. Если такие суперпартнеры существуют, у одного или нескольких из них масса может оказаться довольно малой для обнаружения при поисках бозона Хиггса. Суперсимметричные партнеры могли бы также объяснить существование темной материи (см. гл. 6). (Суперпартнеров обозначают прибавлением приставки «с» к названиям фермионов, т. е. суперпартнер электрона именовался бы сэлектроном, протона — спротоном и т. д. Суффикс «ино» присоединяется к названиям суперпартнеров у бозонов, т. е. суперпартнер фотона именовался бы фотино, W- - бозона — вино и т. д.)

Техницвет. Данная теория [сильного взаимодействия] рассматривает кварки и лептоны состоящими из более мелких частиц. Поскольку она предсказывает существование новых частиц, допускается опытная проверка.

Твисторов теория. Посредством [трехмерного] комплексного представления [вещественного] четырехмерного пространства — времени [Минковского] переформулируются положения стандартной модели и общей теории относительности. (Комплексное число задается выражением

а + ib, где i — квадратный корень из — 1, а а и b — действительные числа. [Твисторы же — прямые во вспомогательном комплексном трехмерном проективном пространстве, соответствующие точкам четырехмерного вещественного пространства—времени Минковского. Понятие твистора введено Роджером Пенроузом в конце 1960-х годов.]) Значение комплексных чисел в реальном мире неясно: их нельзя использовать для счета или измерения любых реальных величин.

Чтобы не оказаться на свалке отвергнутых теорий, любая научная гипотеза должна делать предсказания, подкрепляемые опытными данными. Одни новые теории слишком умозрительны для получения предсказаний, доступных проверке; другие очень сложны для расчетов; третьи включают величины, слишком далекие от нашей повседневной действительности, чтобы можно было накладывать на них ограничения на основе наших опыта и интуиции. Для получения экспериментального подтверждения существования некоторых предсказанных очень тяжелых частиц требуется ускоритель величиной с Солнечную систему.

Принцип соответствия Нильса Бора, выдвинутый в 1920-е годы, гласит, что квантовая механика должна согласовываться с классической физикой в случаях, когда классическая теория доказала свою истинность. Если следовать этому правилу в данном случае, всякая новая теория должна сводиться к стандартной модели в условиях, когда опытные данные подтвердили ее верность. Нужно время, чтобы появилась такая теория.

Необходим новый язык?

Умозрительность положений стандартной модели и возможных ее преемниц не должна вводить в заблуждение. Язык, на котором описывается стандартная модель, является математическим, а такой язык сам может оказаться неполным. Не исключено, что потребуются новые математические понятия. Для объяснения движения Ньютон создал дифференциальное исчисление, имеющее дело с плавно изменяющимися функциями и малыми числами. Нам известно, что Вселенной присущи разрывные функции и большие числа, однако многие уравнения по-прежнему выражаются понятиями дифференциального исчисления. (В гл. 5, о прогнозе погоды, мы столкнемся с теми же трудностями.) Многие теории, ставящие целью смену стандартной модели, включают математические понятия на более глубоком по сравнению с дифференциальным исчислением уровне, привлекая такие понятия, как группы, кольца, идеалы и топологические структуры. Составление описывающих поведение Вселенной уравнений — не то же, что решение этих уравнений в физически точных и осмысленных выражениях.

Хромодинамики и систематики

Элементарных частиц

Идея построения материального мира из элементарных, фундаментальных кирпичиков (объектов) восходит к Демокриту, к его атомной гипотезе. В настоящее время можно дать вполне определенную классификацию элементарных частиц и их взаимодействий. Вместе с частицами существуют и античастицы (впервые предсказанные теоретически великим английским физиком-теоретиком Полем Дираком в 1928 г.). Характерная особенность частиц и античастиц заключается в том, что при их взаимодействии, столкновении происходит их взаимное уничтожение - аннигиляция, сопровождающаяся образованием фотонов. Вероятно, самой первой экспериментально определенной элементарной частицей является электрон, затем физики (с «легкой руки» Планка и Эйнштейна) начали оперировать понятием фотона (кванта электромагнитного поля). В начале XX века, точнее к началу его тридцатых годов, физикам были уже известны (кроме электрона) такие элементарные частицы, как протон, нейтрон и позитрон. Для построения атома и его ядра как неких структур вполне, казалось бы, достаточно трех частиц — протона, нейтрона и электрона. По существу, так оно и есть, ядро атома состоит из протонов и нейтронов, а электроны занимают определенные энергетические состояния вблизи ядра, которые впервые рассчитал еще в 1913 году Нильс Бор. Но, очевидно, природа атома и элементарных частиц не такая простая, как нам этого хотелось бы. И в настоящее, время семейство элементарных частиц (с учетом очень короткоживущих — так называемых резонансов) насчитывает большее число, чем количество химических элементов в таблице Д. И. Менделеева (а их сейчас открыто 118). Очевидно, что слово «элементарная» частица в настоящее время имеет совсем другой смысл, чем в годы, когда были известны только фотон, электрон, протон и нейтрон. Сегодня элементарные частицы подразделяют на 3 класса: адроны (адроны включают в себя бари-оны и мезоны, и тогда можно говорить о 4 классах частиц), лептоны и фотон (последний класс частиц, или, наоборот, первый, порядок здесь не важен, содержит только одну частицу, она же античастица себе).

Подразделение элементарных частиц на классы связано с видами взаимодействий, существующих в природе. Всего в природе существует 4 вида взаимодействия, и ниже они представлены по степени убывания их интенсивности.

1) Сильные взаимодействия (осуществляются только среди адронов).

2) Электромагнитные взаимодействия (осуществляются между всеми элементарными частицами, имеющими электрический заряд, и между фотонами, не имеющими электрический заряд, но являющимися переносчиками электромагнитного взаимодействия).

3) Слабые взаимодействия обуславливают медленные распады частиц с участием нейтрино. В «чистом» виде (т. е. без наложения, например, с электромагнитным взаимодействием) слабые взаимодействия существуют только у нейтрино.

4) Гравитационные взаимодействия (притяжение между любыми массами).

Еще на ранних стадиях изучения «элементарных» частиц возникли два вопроса:

1) Какова роль и назначение частиц, кроме протона, нейтрона и электрона (из которых строятся атомы всех химических элементов), в общей картине строения материи?

2) Как соотносятся эти частицы с протонами, нейтронами и электронами, следует ли их все рассматривать как элементарные образования?

Определенного, исчерпывающего ответа на эти вопросы нет. Но, тем не менее, сейчас, в начале XXI века, мы имеем достаточно четкую картину об одном, самом крупном классе элементарных частиц — классе адронов.

Адроны, в свою очередь, как уже отмечалось, подразделяются на барионы и мезоны. Барионы в своем составе содержат нуклоны (это протоны и нейтроны, частицы, из которых состоят ядра атомов) и гипероны. Все адроны объединяет то, что они подвержены (или обладают?) сильному взаимодействию. В 1961 году американский физик Мюррей Гелл-Манн и израильский - Ювал Нееман, одновременно, но независимо друг от друга предложили унитарную систематику (систему классификации на основе унитарной группы симметрии SU (3) норвежского математика Софуса Ли) сильновзаимодействующих частиц — адронов, которую Гелл-Манн назвал восьмимерный формализм (термин этот перекликается с понятием восьмеричный путь в буддизме). Эта система группировала адроны и мезоны в мультиплеты по 8, 10, 18 и 27 частиц. Частицы каждого мультиплета считались в таком случае различными состояниями одной и той же элементарной частицы. Идея о такой симметрии частиц восходит к работе В. Гейзенберга, предложившего в конце тридцатых годов считать протон и нейтрон в ядре атома двумя состояниями одной и той же частицы, которая получила название нуклон. Два состояния нуклона отличаются друг от друга новым квантовым числом, названным Гейзен-бергом изотопическим спином, или изоспином. Появились новые квантовые числа и в новой унитарной классификации (см. ниже).

Три года спустя, в 1964 г., появилась гипотеза о кварках как самых фундаментальных частиц материи или элементов праматерии. Гипотеза эта была высказана и обоснована все тем же Гелл-Манном и независимо от него Дж. Цвейгом. Название «кварк» было дано этим частицам Гелл-Манном и взято было им из лексики современного фантастического романа широко известного американского писателя Дж. Джойса. Дж. Цвейг предлагал другое название — эйс (от англ. асе — карточный туз или просто туз), но оно не прижилось, победил авторитет Гелл-Манна. В гипотезе Гелл-Манна и Цвейга все барионы могут быть составлены из трех различных кварков, а мезоны из двух — кварка и антикварка. Обозначим символом q кварк, В — барион, М — мезон. Тогда B = (qqq), — антикварк.

Чтобы понять, как возникла гипотеза о существовании кварков, и задать их свойства, необходимо познакомиться с тем, как определяются состояния некоторой микрочастицы. Описать микрочастицу — значит перечислить значения физических величин, ее характеризующих. К числу таких характеристик, как минимум, относятся масса частицы т, электрический заряд Q и спин J. Кроме этого, у адронов есть барионный заряд В, так что обычно всем барионам приписывают В = 1 (антибарионам В = -1), у мезонов В = 0 (у лептонов и у фотона также, естественно, В = 0). Кроме барйонного заряда или числа, примерами других внутренних квантовых чисел могут служить «странность» S, «очарование» (иногда говорят — шарм) С, «красота* Ь (соответственно, от слов strangeness, charm, beauty). Существуют «странные» адроны, у которых,

и точно также есть «очарованные» и «красивые» адроны, у которых, соответственно. Подобно барионному числу, квантовые числа S, С u b сохраняются (сохраняется их суммарное число) в реакциях элементарных частиц с участием адронов (но только в процессах, обусловленных сильным и электромагнитным взаимодействиями). Еще есть две характеристики для микрочастиц, это Р — внутренняя четность и С — зарядовая четность (не путайте с очарованием С).

Знание характеристик адронов позволяет осуществить их классификацию и соответствующую классификацию кварков. Из принятой структуры барионов В a (qqq) следует, что каждому кварку нужно приписать барионное число В = +1/3 (соответственно, антикварку — В = -1/3). Для того чтобы получить полуцелый спин у бариона, необходимо, чтобы у кварка спин был равен 1/2. Электрические заряды кварков получаются в соответствии с формулой Гелл-Манна-Нишиджимы, и они оказываются дробными, кратными одной трети от заряда электрона (одно из многих удивительных свойств кварков). Сейчас физики предполагают существование 6 типов («ароматов») кварков. Первая тройка кварков — и, d, s (соответственно от слов up — верхний, down — нижний, strange — странный). Электрический заряд Q у u-кварка равен +2/3, у d- и s-квар-ков Q = -1/3 заряда электрона. Немного позднее, после того как уже появилась гипотеза кварков, в 1965 году, было высказано предположение, что каждый из кварков может быть представлен тремя разновидностями, различающимися особой характеристикой, названной «цветом». Итак, если в природе существует 6 разновидностей кварков и у каждого из них могут быть 3 «цвета», то получается всего 18 разновидностей кварков и столько же антикварков.

В целом адроны являются бесцветными образованиями, в отличие от кварков, несущих цвет. Цвета, которыми обладают кварки, могут быть названы (условно) красный, желтый и синий. Вторая тройка кварков, которые называют тяжелыми кварками, имеет обозначения с, b, t (от слов charm, beauty, truthful или top, соответственно). Последняя тройка кварков по массе резко отличается (в большую сторону) от первой тройки и-, d-, s-кварков. Адроны, построенные из и-, d-, s-кварков, стали известны на ранних этапах изучения микромира (например, протон р — (uud) или' нейтрон п = (udd)). Антикварки тоже обладают цветом, есть также три разновидности их цвета — фиолетовый, оранжевый, зеленый. Таким образом, любой известный ад-рон (барион или мезон) может быть построен сочетанием из 6-ти кварков и антикварков различных цветов.

Для понимания механизма связи кварков в адроны главное значение имеет вопрос о характере сил или взаимодействий между кварками. Как установила квантовая хромо-динамика (наука, изучающая этот круг явлений), взаимодействие между кварками осуществляется глюонами (от англ. glue — клей), виртуальными частицами, которыми обмениваются кварки между собой. Причем разновидностей глюонов может быть восемь. Характер взаимодействия между кварками таков, что с увеличением расстояния между ними обменные силы не уменьшаются, а, наоборот, увеличиваются! Так возникает эффект «долговой ямы» или «пленения» кварков, эффект, получившее название эффекта асимптотической свободы кварков. Эффект этот следует понимать так - чем ближе кварки друг к другу, тем они свободнее! Именно по этой причине или природе, в свободном состоянии не обнаружен ни один кварк, хотя уже более сорока лет ученые не сомневаются в их существовании. Экспериментальным путем установлено, что удерживающий потенциал кварка внутри адрона линейно зависит от расстояния, и, чтобы оторвать кварк от адрона, нужно затратить бесконечно большую энергию.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.116.20 (0.047 с.)