ТОП 10:

ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ УДЕЛЬНЫХ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА МЕТОДОМ КЛЕМАНА – ДЕЗОРМА



1. Цель работы

Целью работы является ознакомление с газовыми законами и с методикой определения отношения СРV методом адиабатичес­кого расширения (Клемана-Дезорма).

Теоретические пояснения

Процессы, которые происходят в газах, подчиняется одному из основных законов природы - закону сохранения и превращения энергии. Выражением этого закона является первое начало термодинамики. В достаточно общей форме оно может быть сформулировано так: количество теплоты δQ, сообщенное системе, расходуется на увеличение внутренней энергии системы dUи насовершение системой работы δА против внешних сил:

δQ = dU + δА (1)

Количеством теплоты называется энергия, передаваемая от одного тела к другому в процессе теплообмена.

Внутренней энергией можно назвать кинетическую и потенциальную энергию (энергию взаимодействия) его молекул.

Газ, обладающий такими же свойствами, как и совокупность невзаимодействующих материальных точек, называют идеальным газом.

Многочисленные опыты показали, что реальные газы при не слишком низких температурах и достаточно малых давлениях по своим свойствам близки к идеальным газам. Так, водород и гелий уже при атмосферном давлении и комнатной температуре ведут себя практически как идеальные газы.

Состояние газообразной системы определяется заданием трех термодинамических параметров Р, V и Т, связанных между собой уравнением состояния (для идеального газа – это уравнение Менделеева-Клапейрона):

ƒ (P,V,T) = 0. (2)

Среди процессов, которые могут происходить в газах, встречаются так называемые изопроцессы, при которых один их трех параметров состояния (Р, V или Т) сохраняется постоянным. Такими процессами являются изобарный, изохорный и изотермический.

Изохорическим (изохорным)называется процесс, когда сис­тема переходит из одного состояния в другое при постоянном объеме.

Изобарическим (изобарным) называется процесс, когда система переходит из одного состояния в другое при постоянном давлении.

Изотермическим называется процесс, когда система переходит из одного состояния в другое при постоянной температуре.

Если веществу сообщить количество тепла δQ, то его тем­пература увеличится на dТ. Отношение бесконечно малого коли­чества теплоты, полученного веществом, к соответствующему прира­щению его температуры называется теплоемкостью вещества:

C = δQ/ dТ(3)

Теплоемкость, отнесенная к единице массы вещества, называется удельной теплоемкостью:

Сm= (1/m)С.

Так как система может быть нагрета в результате различных процессов, необходимо еще указать условия, при которых происходит нагрв. У газа различают теплоемкость при постоянном объеме CVи теплоемкость при постоянном давлении СP.

При постоянном объеме работа внешних сил δА = P dV равна нулю, и всё сообщаемое газу извне количество теплоты целиком идет на увеличение его внутренней энергии U.Отсюда теплоемкость газа при постоянном объеме СV численно равна отношению приращения внутренней энергии одного моля газа dUк приращению его температуры dT.

Cv = (∂U/∂T)V (4)

При нагревании газа при постоянном давлении газ рас­ширяется, сообщаемое ему извне количество теплоты идет не только на увеличение его внутренней энергии, но и на совершение работы δАпротив внешних сил. Следовательно, теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме на величину отношения работы (для идеального газа внутрен­няя энергия является функцией только температуры), которую совер­шает один моль газа при расширении, к приращению его температуры

СP = (δQ/ dТ)P = (∂U/∂T)P + Р(∂V/∂T)P (5)

Для моля идеального газа уравнение (2) имеет вид: PV = RT.Тогда в уравнении (5) (∂V/∂T)P = R/P. В результате получается уравне­ние Роберта Майера:

СP – СV = R.

Знание теплоемкостей СP, СV важно при рассмотрении адиабатических процессов.

Адиабатическим называется такой процесс, при котором система переходит из одного состояния в другое без теплообмена с внешней средой (например, достаточно быстрое расширение или сжатие газа).

Если в идеальном газе происходит адиабатический процесс, то
давление Ри объем V связаны уравнением Пуассона (уравнение
адиабаты)

PV γ = const, γ = СРV, (6)

где показатель адиабаты γесть отношение удельных теплоемкос­тей газа при постоянном давлении и постоянном объеме.

Для идеального газа γ может быть рассчитана теоретически, если воспользоваться постулатом о равнораспределении энергии по сте­пеням свободы (для системы, находящейся в тепловом равновесии при температуре Т).

Числом степеней свободы iтела называется число независимых координат, которые необходимо задавать для того, чтобы полностью оп­ределить положение тела в пространстве.

Материальная точка, произвольно движущаяся в пространстве, обладает тремя степе­нями свободы (X, У, Z). Молекулы одноатомного газа можно рассматривать как материальные точки на том основании, что их масса сосредоточена в ядре, размеры которого очень малы (10-13 см). Молекула одноатомного газа может иметь лишь три степени свободы поступательного движения.

Молекулы, состоящие из двух, трех и более числа атомов, не могут быть уподоблены материальным точкам. Молекула двухатомного газа в первом приближении представляет собой два жестко связанных атома, находящихся на некотором расстоянии друг от друга. Такая молекула, помимо трех степеней свободы поступательного движения, имеет еще две степени свободы вращательного движения вокруг осей X и Y (рис. 1). Вращение вокруг оси Z рассматривать не следует, т.к. предполагается, что атомы не имеют размеров.

Z

 

       
   
 
 


У

 
 


X

 

Рис. 1. Модель двухатомной молекулы с двумя степенями свободы вращения вокруг осей X и Y.

Молекулы, состоящие из трех и более атомов, не расположенных на одной прямой, обладают шестью степенями свободы: три от поступательного движения и три от вращения вокруг трех взаимно перпендикулярных осей.

Согласно теореме о равнораспределении энергии по степеням свободы, на каждую степень свободы системы приходится одинаковая кинетическая энергия:

EК = ½ kТ

где k = 1,38·10-23 Дж/К – постоянная Больцмана.

В идеальном газе нет сил взаимодействия между молекулами, а, следовательно, равна нулю и их взаимная потенциальная энергия. Таким образом, на одну степень свободы молекулы идеального газа приходится энергия E = ½ kТ, а на i степеней свободы Ei = ( i/2) kТ.

Для моля идеального газа внутренняя энергия U = (1/2) kТNА, где NА = 6,02*1023 моль -1 – число Авогадро.

Тогда, учитывая, что kNА= R, где R = 8,31 Дж/K моль – универсальная газовая постоянная, получаем:

U = (i/2)RT.

Зная аналитическое выражение для U,получаем значение CV для идеального газа:

CV = (i/2)R (7)

Используя уравнение Майера CP – CV = R, получаем выражение для CP:

CP = R (i+2)/2 . (8)

Тогда для γ:

γ = CP / CV = (i+2)/i (9)

Для воздуха, состоящего из смеси двухатомных газов N2 и O2 , i = 5, откуда γ = 1,4.







Последнее изменение этой страницы: 2017-02-09; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.80.55.37 (0.006 с.)