Окружность. Уравнение окружности. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Окружность. Уравнение окружности.



Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке называется множество всех точек М плоскости, удовлетворяющих условию . Пусть точка М в прямоугольной системе координат Оху имеет координаты , а – произвольная точка окружности (см. рис. 48).

О
х
у
R
Рис. 48.

 


 

 

Тогда из уравнения получим уравнение

то есть

(11.2)

 

Уравнению (11.2) удовлетворяют координаты любой точки данной окружности и не удовлетворяют координаты никакой точки, не лежащих на окружности.

Уравнение (11.2) называется каноническим уравнением окружности.

В частности, полагая и , получим уравнение окружности с центром в начале координат

Уравнение окружности (11.2) после несложных преобразований примет вид При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

1) коэффициенты при и равны между собой;

2) отсутствует член, содержащий произведение текущих координат

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения и получим

(11.3)

Преобразуем это уравнение:

т.е.

т.е.

(11.4)

Отсюда следует, что уравнение (11.3) определяет окружность при условии, Ее центр находится в точке , а радиус . Если же , то уравнение (11.3) имеет вид . Ему удовлетворяют координаты единственной точки . В этом случае говорят: «окружность выродилась в точку» (имеет нулевой радиус).

Если , то уравнение (11.4) а, следовательно, и равносильное уравнение (11.3) не определяет никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая часть – не отрицательна (говорят: «окружность мнимая»).

 

34.Эллипс (вершины, оси, полуоси, фокусы…).Уравнение эллипса.

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

 

О
х
у
Рис. 49.
Обозначим фокусы через и , расстояние между ними через , а сумму расстояний от произвольной точки эллипса до фокусов – через (см. рис. 49). По определению , т.е. .

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы и лежали на оси Ох, а начало координат совпадало с серединой отрезка . Тогда фокусы будут иметь следующие координаты и .

 

Пусть – произвольная точка эллипса. Тогда, согласно определению эллипса , т.е.

. (11.5)

Это, по сути, и есть уравнение эллипса.

Преобразуем уравнение (11.5) к более простому виду следующим образом:

,

,

,

,

.

.
Так как , то . Положим

 

(11.6)

.
Тогда последнее уравнение примет вид или

 

(11.7)

 

Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническим уравнением эллипса.

Эллипс – кривая второго порядка.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 181; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.2.122 (0.011 с.)