ЗНАЕТЕ ЛИ ВЫ?

СИЛИКАТНЫЕ ИЗДЕЛИЯ АВТОКЛАВНОГО ТВЕРДЕНИЯ



К силикатным изделиям автоклавного твердения относят материалы, получаемые из сырьевой смеси известково-кремнеземистого вяжущего и минеральных заполнителей путем гидротермального синтеза гидросиликатов кальция, осуществляемого при повышенных значениях давления и температуры водяного пара.

В 1880 г. В. Михаэлисом был предложен способ получения известково-песчаных изделий путем обработки в среде насыщенного водяного пара при его повышенной (выше 100 °С) температуре и избыточном (выше атмосферного) давлении в автоклаве. Современная технология автоклавных материалов включает в себя получение разнообразных изделий различного назначения из известково-песчаных, известково-шлаковых и других сырьевых смесей. Наиболее распространены известково-песчаные (силикатные) материалы и изделия. За 8-12 ч автоклавной обработки при температуре 174 – 200 °С и давлении 0,8 – 1,6 МПа насыщенного водяного пара из уплотненной смеси извести и песка получают изделия с прочностью до 30-40 МПа. В автоклаве идет взаимодействие между гидроксидом кальция, кремнеземом SiO2 и водой с образованием (синтезом) малорастворимых гидросиликатов кальция (ГСК). Иногда этот процесс называют гидросиликатным твердением извести. Эти цементирующие соединения отличаются высокой клеящей способностью и водостойкостью. Они связывают частицы заполнителя (зерна песка) в монолит. Таким образом, в силикатных изделиях песок играет двоякую роль – компонента вяжущего и заполнителя. Для повышения реакционной способности песка его часть размалывают (совместно с известью). Измельченную смесь извести и песка называют известково-песчаным вяжущим. К силикатным изделиям и материалам относятся силикатный кирпич и камни, а также силикатный бетон.

Силикатный кирпич и камни–это стеновые изделия, получаемые путем прессования известково-песчаной смеси (с влажностью 5-8 %) с последующим твердением в автоклаве. В сырьевой смеси содержание извести составляет от 6 до 10 % в пересчете на активный СаО.

Силикатный кирпич изготавливают двух видов: одинарный (размерами 250´120´65 мм) и утолщенный (размерами 250´120´88 мм). Размеры силикатных камней ─ 250´120´138 мм. Кирпич изготавливают полнотелым (только одинарный) и пустотелым, камни – только пустотелыми. В зависимости от назначения изделия выпускают рядовыми и лицевыми (с повышенными требованиями к внешнему виду).

В зависимости от средней плотности (структуры материала) полнотелые изделия подразделяются на пористые (с применением пористых заполнителей) со средней плотностью до 1500 кг/м3 и плотные со средней плотностью свыше 1500 кг/м3. По прочности силикатные кирпич и камни изготавливают марок: 75, 100, 125, 150, 175, 200, 300. Марка по прочности лицевого кирпича должна быть не менее 125, лицевых камней – 100. По морозостойкости кирпич и камни изготавливают марок: F 15, F 25, F 35, F 50. Марка по морозостойкости лицевых изделий должна быть не менее F 25. Водопоглощение изделий должно быть не менее 6 %.

Силикатный кирпич и камни применяют для кладки каменных и армокаменных стен и других конструкций в надземной части зданий с нормальным и влажным режимами эксплуатации. Вследствие ограниченной водостойкости силикатный кирпич и камни нельзя использовать для фундаментов и цоколей зданий ниже гидроизоляционного слоя. Эти изделия нельзя также применять для кладки печей и дымовых труб, они не выдерживают длительного воздействия высокой температуры.

Силикатный бетон представляет собой бесцементный (на известково-песчаном вяжущем) бетон автоклавного твердения. Плотные силикатные бетоны можно получить на обычных заполнителях (мелком – песке и крупном – щебне) путем уплотнения (обычно вибрированием) сырьевой смеси в формах. Более эффективным и востребованным видом силикатного бетона является ячеистый силикатный бетон (газосиликат), который отличается от плотного бетона значительно меньшей теплопроводностью, материалоемкостью и энергоемкостью. Из газосиликата изготавливают стеновые камни, плитную теплоизоляцию, а также армированные крупноразмерные изделия (перемычки, панели и плиты перекрытий и др.) с обязательной защитой арматуры от коррозии вследствие пониженной щелочности жидкой фазы в таких бетонах и их высокой пористости. На фасадную поверхность изделий из газосиликата обязательно наносят защитно-декоративные покрытия.


МЕТАЛЛЫ И ИЗДЕЛИЯ ИЗ НИХ

Общие сведения

Металлами называют вещества, характерными признаками которых при обычных условиях являются высокая прочность, пластичность, тепло- и электропроводность, особый блеск, называемый металлическим. Такие свойства металлов обусловливаются их электронными межатомными связями и кристаллическим строением.

Классификация металлов.Металлы разделяют на две основные группы: черные и цветные. Черные металлы – это железоуглеродистые сплавы с примесями кремния, фосфора, марганца и др.; в зависимости от содержания в них углерода подразделяются на стали (содержание углерода менее 2 %) и чугуны (содержание углерода более 2 %). На их долю приходится около 95 % производимых в мире металлов. Остальные металлы и сплавы на их основе относятся к цветным, которые делятся на легкие, плотностью до 5 г/см3 (алюминий, цинк, магний и сплавы на их основе), и тяжелые, плотностью свыше 5 г/см3 (медь и сплавы на ее основе).

Сталь– основной конструкционный металл, применяемый в строительстве. Стали делят на углеродистые и легированные. Углеродистые стали содержат железо, углерод и примеси марганца, кремния, фосфора, серы в концентрациях, называемых нормальными (0,8-1 %). С повышением содержания углерода в углеродистых сталях повышаются их прочность и твердость, но понижается пластичность и увеличивается хрупкость, а также ухудшается свариваемость. По содержанию углерода различают: а) низкоуглеродистые стали (содержание углерода до 0,25 %); б) среднеуглеродистые стали (содержание углерода от 0,25 до 0,6 %); в) высокоуглеродистые стали (содержание углерода 0,6-2 %). По назначению углеродистые стали разделяют на виды: а)стали обыкновенного качества; б) качественные конструкционные; в) инструментальные.

Легированные стали кроме указанных выше примесей содержат легирующие добавки никеля, хрома, титана, марганца, ванадия и др. К легирующим добавкам относятся марганец и кремний, если их содержание превышает нормальные концентрации. Легирующие добавки в целом повышают как прочность сталей, так и их пластичность, и коррозионную стойкость. По содержанию легирующих добавок различают: а) низколегированные стали (содержание легирующих добавок в сумме не более 2,5 %); б) среднелегированные (содержание легирующих добавок от 2,5 до 10 %); в) высоколегированные (содержание легирующих добавок свыше 10 %). По назначению легированные стали разделяют на виды: а) конструкционные; б) инструментальные; в) специального назначения.

Чугуны могут содержать от 2 до 6,67 % углерода. Чугуны являются, как промежуточным продуктом при производстве стали (передельные или белые чугуны с содержанием углерода вплоть до предельного значения в железоуглеродистом сплаве – 6,67 %, а также ферросплавы), так и конструкционным материалом (литейные или серые чугуны с содержанием углерода от 2 до 4 %). Чугуны отличаются высокой твердостью, износостойкостью и хрупкостью, а также меньшими, чем сталь, температурными деформациями. Из серых чугунов изготавливают элементы строительных конструкций, в том числе и такие ответственные, как опорные части железобетонных балок, ферм, башмаки под колонны и др., а также декоративные изделия – чугунное литье и детали печей – печное литье.

Цветные металлы в чистом виде очень редко используются в строительстве. Наиболее распространенными легкими сплавами являются сплавы на основе алюминия – алюминиево-магниевые (магналии), алюминий с медью и магнием (дюралюминий), алюминий с магнием и кремнием (авиаль). Их используют для изготовления несущих и ограждающих конструкций зданий и сооружений. Тяжелые сплавы получают на основе меди, олова, цинка, свинца. Среди них наиболее распространены в строительстве бронзы – сплав меди с оловом (оловянистая бронза) или сплав меди с алюминием, железом и марганцем (алюминиевая бронза), а также латунь – сплав меди с цинком. Эти сплавы отличаются высокой прочностью при достаточной легкости и высокой стойкости к коррозии. Их используют для изготовления архитектурных деталей и санитарно-технической продукции.

Кристаллическое строение металлов.Металлыпредставляют собой сложные многофазовые системы, имеющие в твердом состоянии кристаллическое строение. Каждый металл имеет свою характерную кристаллическую ячейку, которая многократно повторяется и образует кристаллическую решетку. Между структурными элементами металлов действуют различные связи: металлическая, ван-дер-ваальсовая, ионная и ковалентная. В сталях преобладает металлическая связь между решеткой из положительно заряженных ионов и окружающим их «газом» из свободных электронов.

Пространственные кристаллические решетки образуются в металле при его переходе из жидкого состояния в твердое. Этот процесс называется кристаллизацией. Вначале образуются первичные группы кристаллов – центры кристаллизации. Затем происходит рост кристаллов вокруг этих центров. Образовавшиеся зерна металла за счет сближения друг с другом при росте кристаллов имеют неправильную форму, но сохраняют правильность строения внутри каждого кристалла. Образование границ между зернами является важнейшей причиной появления поверхностных дефектов – дислокаций, которые значительно снижают прочность реального металла по сравнению с идеальным (бездефектным) кристаллом. Вместе с тем при увеличении количества дислокаций (плотности дислокаций) сверх некоторого минимального значения в результате измельчения зерен при термообработке металлов, механическом наклепе и других способах упрочнения достигается повышение реальной прочности за счет того, что находящиеся в разных плоскостях и направлениях дислокации мешают друг другу расти и перемещаться.

Технические металлы представляют собой поликристаллические тела, состоящие из большого числа различно ориентированных зерен размером 0,001-0,1 мм. Поэтому в целом металлы являются условно изотропными телами, т.е. обладающими примерно одинаковыми свойствами по всем направлениям.

Производство чугуна и стали.Чугунвыплавляют в доменных печах из железных руд (красного железняка, магнитного железняка и др.). Основным видом топлива является кокс. Для снижения температуры плавления пустой породы, в состав которой входят кремнезем, алюмосиликаты, а также вредные примеси (сера, фосфор), в печь при загрузке руды и топлива добавляют в зависимости от состава руды основные плавни, или флюсы (известняк, доломит), или кислые флюсы (кварц, кварцит, песчаник). Чугун при доменном процессе получается в результате восстановления железа из руд по схеме

Fe2O3 ® Fe3O4 ® FeO ® Fe

Жидкий металл скапливается внизу, более легкий шлак всплывает на поверхность чугуна и защищает его от окисления. После выплавки чугуна сначала выпускают шлак, а затем через нижнее отверстие – чугун. В результате получают науглероженное железо (чугун) с примесями кварца, фосфора, серы, марганца.

Сталь выплавляют в мартеновских печах, конверторах, электропечах. Выплавка стали заключается в уменьшении содержания углерода и примесей в металле путем окисления их кислородом воздуха или кислородом, содержащимся в железной руде, до таких соединений, которые могут быть переведены в шлак или удалены в газообразном состоянии. За счет высокой температуры и поступления кислорода в печь происходят процессы окисления углерода и примесей и их перевод в шлак, а также окисления железа до закиси FeO. Чтобы избавиться от последней, немедленно проводят процесс раскисления: FeO ® Fe. Для этого в расплав вводят раскислители (ферросплавы, алюминий), энергично соединяющиеся с кислородом закиси железа. В зависимости от полноты раскисления различают: спокойную сталь, получающуюся при полном раскислении и застывании металла без выделения газа; полуспокойную и кипящую стали, получающиеся при неполном раскислении. В кипящей стали часть газов остается в металле и при его охлаждении образует газовые пузыри. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей сталями.

Состав и строение железоуглеродистых сплавов.В результате совместной кристаллизации могут образовываться сплавы следующих типов: механическая смесь, твердый раствор и химическое соединение. Механическая смесь образуется путем срастания кристаллов между собой при сохранении специфических свойств каждого компонента. Твердый раствор образуется в результате проникновения в кристаллическую решетку основного металла атомов другого металла или неметалла. В зависимости от характера размещения атомов различают твердые растворы замещения, когда атомы одного компонента частично замещают атомы другого компонента в узлах его кристаллической решетки (при совместной кристаллизации металлов), и внедрения, когда атомы одного из компонентов размещаются в междоузлиях кристаллической решетки другого (при совместной кристаллизации металла с неметаллом). Химическое соединение образуется в результате химического взаимодействия в строгом порядке и количественном соотношении. Основное химическое соединение в сплавах железа с углеродом – карбид железа Fe3С, называемый цементитом.

Строение сплава определяет его свойства, поэтому важно знать, как это строение меняется в зависимости от состава сплава, а также температуры получения. Основными структурными элементами железоуглеродистого сплава при изменении содержания в нем углерода (рис.8) являются: феррит – твердый раствор углерода в a-Fe, по свойствам близкий к чистому железу, такой же мягкий и пластичный; цементит – карбид железа Fe3С, химическое соединение, очень твердый; перлит – механическая смесь феррита и цементита; ледебурит – механическая смесь аустенита (твердого раствора углерода в g-Fe) и цементита, очень тверд, хрупок.

 

 
 

 


С увеличением содержания углерода в железоуглеродистом сплаве меняется его структура, увеличивается содержание цементита и уменьшается количество перлита. При этом твердость и прочность сплава становится выше, его пластические свойства – ниже.

Механические свойства металлов– это предел текучести, временное сопротивление, относительное удлинение, твердость, ударная вязкость. При испытании на растяжение строят диаграмму растяжения, на которой для одних металлов, например низко- и среднеуглеродистых сталей, фиксируется площадка текучести, указывающая на способность металла претерпевать значительные пластические деформации; на диаграмме растяжения других металлов, например высокоуглеродистых сталей, такая площадка отсутствует.

Предел текучести sт (МПа) определяют либо как напряжение, соответствующее нижнему пределу площадки текучести, либо – для металлов, не имеющих площадки текучести, – как напряжение, при котором достигается некоторая остаточная деформация (обычно 0,2 %, если ее величина не оговорена особо):

,

где рт – соответствующая нагрузка, Н; А0 – площадь первоначального сечения шейки образца, мм2.

Временное сопротивление sв (МПа) определяют как предел прочности металла на растяжение:

,

где рв – нагрузка, соответствующая разрыву образца, Н.

Относительное удлинение Dl (%) характеризует пластичность металла и определяется как отношение приращения длины образца к его исходной длине:

,

где l1 – максимальная длина образца (в момент разрыва), мм; l0 – первоначальная длина образца, мм.

Для чугунов определяют пределы прочности при растяжении, сжатии, изгибе, а также твердость.





Последнее изменение этой страницы: 2017-02-17; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.66.86 (0.008 с.)